These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 28058451)

  • 21. Thermospray generation directly into a flame furnace--an alternative to improve the detection power in atomic absorption spectrometry.
    Bezerra MA; Lemos VA; Garcia JS; da Silva DG; Araújo AS; Arruda MA
    Talanta; 2010 Jul; 82(2):437-43. PubMed ID: 20602917
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Combination of supramolecular solvent-based microextraction and ultrasound-assisted extraction for cadmium determination in flaxseed flour by thermospray flame furnace atomic absorption spectrometry.
    Lemes LFR; Tarley CRT
    Food Chem; 2021 Mar; 357():129695. PubMed ID: 33866245
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A direct solid sampling analysis method for the detection of silver nanoparticles in biological matrices.
    Feichtmeier NS; Ruchter N; Zimmermann S; Sures B; Leopold K
    Anal Bioanal Chem; 2016 Jan; 408(1):295-305. PubMed ID: 26483187
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Beam-injection flame-furnace atomic-absorption spectrometry (BIFF-AAS) with low-pressure sample-jet generation.
    Gáspár A; Berndt H
    Anal Bioanal Chem; 2002 Mar; 372(5-6):695-9. PubMed ID: 11941440
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Atomization efficiency of graphite furnace in atomic absorption spectrometry].
    Zhong MH; Zheng YS
    Guang Pu Xue Yu Guang Pu Fen Xi; 2002 Feb; 22(1):135-8. PubMed ID: 12940051
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Direct atomic absorption spectrometry determination of tin, lead, cadmium and zinc in high-purity graphite with flame furnace atomizer.
    Zacharia A; Gucer S; Izgi B; Chebotarev A; Karaaslan H
    Talanta; 2007 Apr; 72(2):825-30. PubMed ID: 19071693
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Screening test of silver nanoparticles in biological samples by graphite furnace-atomic absorption spectrometry.
    Gagné F; Turcotte P; Gagnon C
    Anal Bioanal Chem; 2012 Oct; 404(6-7):2067-72. PubMed ID: 22836482
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Determination of silver nanoparticles by atomic absorption spectrometry after dispersive suspended microextraction followed by oxidative dissolution back-extraction.
    Choleva TG; Tsogas GZ; Giokas DL
    Talanta; 2019 May; 196():255-261. PubMed ID: 30683361
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On-line hyphenation of capillary electrophoresis with flame-heated furnace atomic absorption spectrometry for trace mercury speciation.
    Li Y; Jiang Y; Yan XP
    Electrophoresis; 2005 Feb; 26(3):661-7. PubMed ID: 15690418
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Beam injection flame furnace atomic absorption spectrometry: a new flame method.
    Gáspár A; Berndt H
    Anal Chem; 2000 Jan; 72(1):240-6. PubMed ID: 10655660
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microwave-induced combustion coupled to flame furnace atomic absorption spectrometry for determination of cadmium and lead in botanical samples.
    Barin JS; Bartz FR; Dressier VL; Paniz JN; Flores EM
    Anal Chem; 2008 Dec; 80(23):9369-74. PubMed ID: 19551997
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ligand-assisted magnetic solid phase extraction for fast speciation of silver nanoparticles and silver ions in environmental water.
    Zhao B; He M; Chen B; Hu B
    Talanta; 2018 Jun; 183():268-275. PubMed ID: 29567175
    [TBL] [Abstract][Full Text] [Related]  

  • 33. New, rapid method to measure dissolved silver concentration in silver nanoparticle suspensions by aggregation combined with centrifugation.
    Dong F; Valsami-Jones E; Kreft JU
    J Nanopart Res; 2016; 18(9):259. PubMed ID: 27642257
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Selective colorimetric sensors based on the monitoring of an unmodified silver nanoparticles (AgNPs) reduction for a simple and rapid determination of mercury.
    Jarujamrus P; Amatatongchai M; Thima A; Khongrangdee T; Mongkontong C
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 May; 142():86-93. PubMed ID: 25699697
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis and application of imprinted polyvinylimidazole-silica hybrid copolymer for Pb2+ determination by flow-injection thermospray flame furnace atomic absorption spectrometry.
    Tarley CR; Andrade FN; de Oliveira FM; Corazza MZ; de Azevedo LF; Segatelli MG
    Anal Chim Acta; 2011 Oct; 703(2):145-51. PubMed ID: 21889628
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydrodynamic chromatography coupled to single-particle ICP-MS for the simultaneous characterization of AgNPs and determination of dissolved Ag in plasma and blood of burn patients.
    Roman M; Rigo C; Castillo-Michel H; Munivrana I; Vindigni V; Mičetić I; Benetti F; Manodori L; Cairns WR
    Anal Bioanal Chem; 2016 Jul; 408(19):5109-24. PubMed ID: 26396079
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transfer Study of Silver Nanoparticles in Poultry Production.
    Gallocchio F; Biancotto G; Cibin V; Losasso C; Belluco S; Peters R; van Bemmel G; Cascio C; Weigel S; Tromp P; Gobbo F; Catania S; Ricci A
    J Agric Food Chem; 2017 May; 65(18):3767-3774. PubMed ID: 28437606
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cytotoxic and genotoxic effects of silver nanoparticles on meristematic cells of Allium cepa roots: A close analysis of particle size dependence.
    Scherer MD; Sposito JCV; Falco WF; Grisolia AB; Andrade LHC; Lima SM; Machado G; Nascimento VA; Gonçalves DA; Wender H; Oliveira SL; Caires ARL
    Sci Total Environ; 2019 Apr; 660():459-467. PubMed ID: 30640113
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chemometric approach to discrimination and determination of binary mixtures of silver ions and nanoparticles in consumer products by graphite furnace atomic absorption spectrometry.
    Gruszka J; Martyna A; Godlewska-Żyłkiewicz B
    Talanta; 2021 Aug; 230():122319. PubMed ID: 33934783
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of Secondary Particle Formation in the Persistence of Silver Nanoparticles in Humic Acid Containing Water under Light Irradiation.
    Zhang T; Lu D; Zeng L; Yin Y; He Y; Liu Q; Jiang G
    Environ Sci Technol; 2017 Dec; 51(24):14164-14172. PubMed ID: 29164869
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.