These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
271 related articles for article (PubMed ID: 28058482)
1. Comparison of the effects of model-based iterative reconstruction and filtered back projection algorithms on software measurements in pulmonary subsolid nodules. Cohen JG; Kim H; Park SB; van Ginneken B; Ferretti GR; Lee CH; Goo JM; Park CM Eur Radiol; 2017 Aug; 27(8):3266-3274. PubMed ID: 28058482 [TBL] [Abstract][Full Text] [Related]
2. Persistent pulmonary subsolid nodules: model-based iterative reconstruction for nodule classification and measurement variability on low-dose CT. Kim H; Park CM; Kim SH; Lee SM; Park SJ; Lee KH; Goo JM Eur Radiol; 2014 Nov; 24(11):2700-8. PubMed ID: 25038857 [TBL] [Abstract][Full Text] [Related]
3. Prospective intra-individual comparison of standard dose versus reduced-dose thoracic CT using hybrid and pure iterative reconstruction in a follow-up cohort of pulmonary nodules-Effect of detectability of pulmonary nodules with lowering dose based on nodule size, type and body mass index. Vardhanabhuti V; Pang CL; Tenant S; Taylor J; Hyde C; Roobottom C Eur J Radiol; 2017 Jun; 91():130-141. PubMed ID: 28629559 [TBL] [Abstract][Full Text] [Related]
4. Volumetric quantification of lung nodules in CT with iterative reconstruction (ASiR and MBIR). Chen B; Barnhart H; Richard S; Robins M; Colsher J; Samei E Med Phys; 2013 Nov; 40(11):111902. PubMed ID: 24320435 [TBL] [Abstract][Full Text] [Related]
5. Effect of CT Reconstruction Algorithm on the Diagnostic Performance of Radiomics Models: A Task-Based Approach for Pulmonary Subsolid Nodules. Kim H; Park CM; Gwak J; Hwang EJ; Lee SY; Jung J; Hong H; Goo JM AJR Am J Roentgenol; 2019 Mar; 212(3):505-512. PubMed ID: 30476456 [TBL] [Abstract][Full Text] [Related]
6. Effects of Iterative Reconstruction Algorithms on Computer-assisted Detection (CAD) Software for Lung Nodules in Ultra-low-dose CT for Lung Cancer Screening. Nomura Y; Higaki T; Fujita M; Miki S; Awaya Y; Nakanishi T; Yoshikawa T; Hayashi N; Awai K Acad Radiol; 2017 Feb; 24(2):124-130. PubMed ID: 27986507 [TBL] [Abstract][Full Text] [Related]
7. Volumetric measurement of artificial pure ground-glass nodules at low-dose CT: Comparisons between hybrid iterative reconstruction and filtered back projection. Sakai N; Yabuuchi H; Kondo M; Kojima T; Nagatomo K; Kawanami S; Kamitani T; Yonezawa M; Nagao M; Honda H Eur J Radiol; 2015 Dec; 84(12):2654-62. PubMed ID: 26362824 [TBL] [Abstract][Full Text] [Related]
8. CT Dose Reduction for Visceral Adipose Tissue Measurement: Effects of Model-Based and Adaptive Statistical Iterative Reconstructions and Filtered Back Projection. Yamada Y; Jinzaki M; Niijima Y; Hashimoto M; Yamada M; Abe T; Kuribayashi S AJR Am J Roentgenol; 2015 Jun; 204(6):W677-83. PubMed ID: 26001256 [TBL] [Abstract][Full Text] [Related]
9. Detection and size measurements of pulmonary nodules in ultra-low-dose CT with iterative reconstruction compared to low dose CT. Sui X; Meinel FG; Song W; Xu X; Wang Z; Wang Y; Jin Z; Chen J; Vliegenthart R; Schoepf UJ Eur J Radiol; 2016 Mar; 85(3):564-70. PubMed ID: 26860668 [TBL] [Abstract][Full Text] [Related]
10. Vascular diameter measurement in CT angiography: comparison of model-based iterative reconstruction and standard filtered back projection algorithms in vitro. Suzuki S; Machida H; Tanaka I; Ueno E AJR Am J Roentgenol; 2013 Mar; 200(3):652-7. PubMed ID: 23436858 [TBL] [Abstract][Full Text] [Related]
11. Filtered back projection, adaptive statistical iterative reconstruction, and a model-based iterative reconstruction in abdominal CT: an experimental clinical study. Deák Z; Grimm JM; Treitl M; Geyer LL; Linsenmaier U; Körner M; Reiser MF; Wirth S Radiology; 2013 Jan; 266(1):197-206. PubMed ID: 23169793 [TBL] [Abstract][Full Text] [Related]
12. Systematic error in lung nodule volumetry: effect of iterative reconstruction versus filtered back projection at different CT parameters. Willemink MJ; Leiner T; Budde RP; de Kort FP; Vliegenthart R; van Ooijen PM; Oudkerk M; de Jong PA AJR Am J Roentgenol; 2012 Dec; 199(6):1241-6. PubMed ID: 23169714 [TBL] [Abstract][Full Text] [Related]
13. Comparison of pure and hybrid iterative reconstruction techniques with conventional filtered back projection: image quality assessment in the cervicothoracic region. Katsura M; Sato J; Akahane M; Matsuda I; Ishida M; Yasaka K; Kunimatsu A; Ohtomo K Eur J Radiol; 2013 Feb; 82(2):356-60. PubMed ID: 23199752 [TBL] [Abstract][Full Text] [Related]
14. Comparison of the image qualities of filtered back-projection, adaptive statistical iterative reconstruction, and model-based iterative reconstruction for CT venography at 80 kVp. Kim JH; Choo KS; Moon TY; Lee JW; Jeon UB; Kim TU; Hwang JY; Yun MJ; Jeong DW; Lim SJ Eur Radiol; 2016 Jul; 26(7):2055-63. PubMed ID: 26486938 [TBL] [Abstract][Full Text] [Related]
15. Ultralow-dose CT with tin filtration for detection of solid and sub solid pulmonary nodules: a phantom study. Martini K; Higashigaito K; Barth BK; Baumueller S; Alkadhi H; Frauenfelder T Br J Radiol; 2015; 88(1056):20150389. PubMed ID: 26492317 [TBL] [Abstract][Full Text] [Related]
16. Assessment of a model-based, iterative reconstruction algorithm (MBIR) regarding image quality and dose reduction in liver computed tomography. Chang W; Lee JM; Lee K; Yoon JH; Yu MH; Han JK; Choi BI Invest Radiol; 2013 Aug; 48(8):598-606. PubMed ID: 23511193 [TBL] [Abstract][Full Text] [Related]
17. Submillisievert chest CT with filtered back projection and iterative reconstruction techniques. Padole A; Singh S; Ackman JB; Wu C; Do S; Pourjabbar S; Khawaja RD; Otrakji A; Digumarthy S; Shepard JA; Kalra M AJR Am J Roentgenol; 2014 Oct; 203(4):772-81. PubMed ID: 25247943 [TBL] [Abstract][Full Text] [Related]
18. Ultra-low-dose CT with model-based iterative reconstruction (MBIR): detection of ground-glass nodules in an anthropomorphic phantom study. Rampinelli C; Origgi D; Vecchi V; Funicelli L; Raimondi S; Deak P; Bellomi M Radiol Med; 2015 Jul; 120(7):611-7. PubMed ID: 25656039 [TBL] [Abstract][Full Text] [Related]
19. Improving the prediction of lung adenocarcinoma invasive component on CT: Value of a vessel removal algorithm during software segmentation of subsolid nodules. Garzelli L; Goo JM; Ahn SY; Chae KJ; Park CM; Jung J; Hong H Eur J Radiol; 2018 Mar; 100():58-65. PubMed ID: 29496080 [TBL] [Abstract][Full Text] [Related]