BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 28058645)

  • 1. Efficient Organic/Inorganic Hybrid Solar Cell Integrating Polymer Nanowires and Inorganic Nanotetrapods.
    Xu W; Tan F; Liu X; Zhang W; Qu S; Wang Z; Wang Z
    Nanoscale Res Lett; 2017 Dec; 12(1):11. PubMed ID: 28058645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphology Control of Monomer-Polymer Hybrid Electron Acceptor for Bulk-Heterojunction Solar Cell Based on P3HT and Ti-Alkoxide with Ladder Polymer.
    Ueda Y; Kurokawa Y; Nishii K; Kanematsu H; Fukumoto T; Kato T
    Materials (Basel); 2022 Feb; 15(3):. PubMed ID: 35161139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanotetrapods: quantum dot hybrid for bulk heterojunction solar cells.
    Tan F; Qu S; Li F; Jiang Q; Chen C; Zhang W; Wang Z
    Nanoscale Res Lett; 2013 Oct; 8(1):434. PubMed ID: 24139059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid morphology dependence of CdTe:CdSe bulk-heterojunction solar cells.
    Tan F; Qu S; Zhang W; Wang Z
    Nanoscale Res Lett; 2014; 9(1):593. PubMed ID: 25386107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of the organic/inorganic interface on the organic-inorganic hybrid solar cells.
    Ichikawa T; Shiratori S
    J Nanosci Nanotechnol; 2012 May; 12(5):3725-31. PubMed ID: 22852300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GaN Nanowire Array for Charge Transfer in Hybrid GaN/P3HT:PC
    Tchutchulashvili G; Chusnutdinow S; Mech W; Korona KP; Reszka A; Sobanska M; Zytkiewicz ZR; Sadowski W
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33114337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of an Inorganic Interlayer on Exciton Separation in Hybrid Solar Cells.
    Armstrong CL; Price MB; Muñoz-Rojas D; Davis NJ; Abdi-Jalebi M; Friend RH; Greenham NC; MacManus-Driscoll JL; Böhm ML; Musselman KP
    ACS Nano; 2015 Dec; 9(12):11863-71. PubMed ID: 26548399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid-type quantum-dot cosensitized ZnO nanowire solar cell with enhanced visible-light harvesting.
    Kim H; Jeong H; An TK; Park CE; Yong K
    ACS Appl Mater Interfaces; 2013 Jan; 5(2):268-75. PubMed ID: 23231810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron transport limitation in P3HT:CdSe nanorods hybrid solar cells.
    Lek JY; Xing G; Sum TC; Lam YM
    ACS Appl Mater Interfaces; 2014 Jan; 6(2):894-902. PubMed ID: 24351093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 18.5% Efficiency Organic Solar Cells with a Hybrid Planar/Bulk Heterojunction.
    Hong L; Yao H; Cui Y; Bi P; Zhang T; Cheng Y; Zu Y; Qin J; Yu R; Ge Z; Hou J
    Adv Mater; 2021 Oct; 33(43):e2103091. PubMed ID: 34510580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient Electron Collection in Hybrid Polymer Solar Cells: In-Situ-Generated ZnO/Poly(3-hexylthiophene) Scaffolded by a TiO2 Nanorod Array.
    Liao WP; Wu JJ
    J Phys Chem Lett; 2013 Jun; 4(11):1983-8. PubMed ID: 26283138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inorganic/organic hybrid solar cells: optimal carrier transport in vertically aligned silicon nanowire arrays.
    Sato K; Dutta M; Fukata N
    Nanoscale; 2014 Jun; 6(11):6092-101. PubMed ID: 24789210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Huge suppression of charge recombination in P3HT-ZnO organic-inorganic hybrid solar cells by locating dyes at the ZnO/P3HT interfaces.
    Shen Q; Ogomi Y; Das SK; Pandey SS; Yoshino K; Katayama K; Momose H; Toyoda T; Hayase S
    Phys Chem Chem Phys; 2013 Sep; 15(34):14370-6. PubMed ID: 23877400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inorganic-organic hybrid solar cell: bridging quantum dots to conjugated polymer nanowires.
    Ren S; Chang LY; Lim SK; Zhao J; Smith M; Zhao N; Bulović V; Bawendi M; Gradecak S
    Nano Lett; 2011 Sep; 11(9):3998-4002. PubMed ID: 21859097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture.
    Heremans P; Cheyns D; Rand BP
    Acc Chem Res; 2009 Nov; 42(11):1740-7. PubMed ID: 19751055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unraveling the Organic and Inorganic Passivation Mechanism of ZnO Nanowires for Construction of Efficient Bulk Heterojunction Quantum Dot Solar Cells.
    Wei Y; Nakamura M; Ding C; Liu D; Li H; Li Y; Yang Y; Wang D; Wang R; Hayase S; Masuda T; Shen Q
    ACS Appl Mater Interfaces; 2022 Aug; 14(31):36268-36276. PubMed ID: 35894431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding polycarbazole-based polymer:CdSe hybrid solar cells.
    Lek JY; Lam YM; Niziol J; Marzec M
    Nanotechnology; 2012 Aug; 23(31):315401. PubMed ID: 22796943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increasing the efficiency of polymer solar cells by silicon nanowires.
    Eisenhawer B; Sensfuss S; Sivakov V; Pietsch M; Andrä G; Falk F
    Nanotechnology; 2011 Aug; 22(31):315401. PubMed ID: 21727315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Charge-separation enhancement in inverted polymer solar cells by molecular-level triple heterojunction: NiO-np:P3HT:PCBM.
    Pradeep UW; Villani M; Calestani D; Cristofolini L; Iannotta S; Zappettini A; Coppedè N
    Nanotechnology; 2017 Jan; 28(3):035403. PubMed ID: 27966476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular bulk heterojunctions: an emerging approach to organic solar cells.
    Roncali J
    Acc Chem Res; 2009 Nov; 42(11):1719-30. PubMed ID: 19580313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.