BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1209 related articles for article (PubMed ID: 28058719)

  • 1. Segmented separable footprint projector for digital breast tomosynthesis and its application for subpixel reconstruction.
    Zheng J; Fessler JA; Chan HP
    Med Phys; 2017 Mar; 44(3):986-1001. PubMed ID: 28058719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of source blur on digital breast tomosynthesis reconstruction.
    Zheng J; Fessler JA; Chan HP
    Med Phys; 2019 Dec; 46(12):5572-5592. PubMed ID: 31494953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Image quality of microcalcifications in digital breast tomosynthesis: effects of projection-view distributions.
    Lu Y; Chan HP; Wei J; Goodsitt M; Carson PL; Hadjiiski L; Schmitz A; Eberhard JW; Claus BE
    Med Phys; 2011 Oct; 38(10):5703-12. PubMed ID: 21992385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of reconstruction algorithms for a stationary digital breast tomosynthesis system using a carbon nanotube X-ray source array.
    Hu Z; Chen Z; Zhou C; Hong X; Chen J; Zhang Q; Jiang C; Ge Y; Yang Y; Liu X; Zheng H; Li Z; Liang D
    J Xray Sci Technol; 2020; 28(6):1157-1169. PubMed ID: 32925159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparative study of limited-angle cone-beam reconstruction methods for breast tomosynthesis.
    Zhang Y; Chan HP; Sahiner B; Wei J; Goodsitt MM; Hadjiiski LM; Ge J; Zhou C
    Med Phys; 2006 Oct; 33(10):3781-95. PubMed ID: 17089843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observation of super-resolution in digital breast tomosynthesis.
    Acciavatti RJ; Maidment AD
    Med Phys; 2012 Dec; 39(12):7518-39. PubMed ID: 23231301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High resolution stationary digital breast tomosynthesis using distributed carbon nanotube x-ray source array.
    Qian X; Tucker A; Gidcumb E; Shan J; Yang G; Calderon-Colon X; Sultana S; Lu J; Zhou O; Spronk D; Sprenger F; Zhang Y; Kennedy D; Farbizio T; Jing Z
    Med Phys; 2012 Apr; 39(4):2090-9. PubMed ID: 22482630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of a constrained paired-view technique in iterative reconstruction for breast tomosynthesis.
    Wu G; Mainprize JG; Yaffe MJ
    Med Phys; 2013 Oct; 40(10):101901. PubMed ID: 24089903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects on image quality of a 2D antiscatter grid in x-ray digital breast tomosynthesis: Initial experience using the dual modality (x-ray and molecular) breast tomosynthesis scanner.
    Patel T; Peppard H; Williams MB
    Med Phys; 2016 Apr; 43(4):1720. PubMed ID: 27036570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Task-based performance analysis of FBP, SART and ML for digital breast tomosynthesis using signal CNR and Channelised Hotelling Observers.
    Van de Sompel D; Brady SM; Boone J
    Med Image Anal; 2011 Feb; 15(1):53-70. PubMed ID: 20713313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artifact reduction methods for truncated projections in iterative breast tomosynthesis reconstruction.
    Zhang Y; Chan HP; Sahiner B; Wei J; Zhou C; Hadjiiski LM
    J Comput Assist Tomogr; 2009; 33(3):426-35. PubMed ID: 19478639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An iterative reconstruction algorithm for digital breast tomosynthesis imaging using real data at three radiation doses.
    Polat A; Yildirim I
    J Xray Sci Technol; 2018; 26(3):347-360. PubMed ID: 29504549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison study of reconstruction algorithms for prototype digital breast tomosynthesis using various breast phantoms.
    Kim YS; Park HS; Lee HH; Choi YW; Choi JG; Kim HH; Kim HJ
    Radiol Med; 2016 Feb; 121(2):81-92. PubMed ID: 26383027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a chest digital tomosynthesis R/F system and implementation of low-dose GPU-accelerated compressed sensing (CS) image reconstruction.
    Choi S; Lee H; Lee D; Choi S; Lee CL; Kwon W; Shin J; Seo CW; Kim HJ
    Med Phys; 2018 May; 45(5):1871-1888. PubMed ID: 29500855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel pre-processing technique for improving image quality in digital breast tomosynthesis.
    Kim H; Lee T; Hong J; Sabir S; Lee JR; Choi YW; Kim HH; Chae EY; Cho S
    Med Phys; 2017 Feb; 44(2):417-425. PubMed ID: 28032909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of super-resolution and image acquisition on the detection of calcifications in digital breast tomosynthesis.
    Barufaldi B; Acciavatti RJ; Conant EF; Maidment ADA
    Eur Radiol; 2024 Jan; 34(1):193-203. PubMed ID: 37572187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved digital breast tomosynthesis images using automated ultrasound.
    Zhang X; Yuan J; Du S; Kripfgans OD; Wang X; Carson PL; Liu X
    Med Phys; 2014 Jun; 41(6):061911. PubMed ID: 24877822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oblique reconstructions in tomosynthesis. II. Super-resolution.
    Acciavatti RJ; Maidment AD
    Med Phys; 2013 Nov; 40(11):111912. PubMed ID: 24320445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiscale bilateral filtering for improving image quality in digital breast tomosynthesis.
    Lu Y; Chan HP; Wei J; Hadjiiski LM; Samala RK
    Med Phys; 2015 Jan; 42(1):182-95. PubMed ID: 25563259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of amorphous selenium detector thickness on dual-energy digital breast imaging.
    Hu YH; Zhao W
    Med Phys; 2014 Nov; 41(11):111904. PubMed ID: 25370637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 61.