These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 28058792)

  • 1. Metal-Phenolic Carbon Nanocomposites for Robust and Flexible Energy-Storage Devices.
    Oh JY; Jung Y; Cho YS; Choi J; Youk JH; Fechler N; Yang SJ; Park CR
    ChemSusChem; 2017 Apr; 10(8):1675-1682. PubMed ID: 28058792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors.
    Cheng Y; Lu S; Zhang H; Varanasi CV; Liu J
    Nano Lett; 2012 Aug; 12(8):4206-11. PubMed ID: 22823066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supercapacitors based on flexible graphene/polyaniline nanofiber composite films.
    Wu Q; Xu Y; Yao Z; Liu A; Shi G
    ACS Nano; 2010 Apr; 4(4):1963-70. PubMed ID: 20355733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanocellulose-graphene composites: A promising nanomaterial for flexible supercapacitors.
    Xing J; Tao P; Wu Z; Xing C; Liao X; Nie S
    Carbohydr Polym; 2019 Mar; 207():447-459. PubMed ID: 30600028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanostructured carbon and carbon nanocomposites for electrochemical energy storage applications.
    Su DS; Schlögl R
    ChemSusChem; 2010 Feb; 3(2):136-68. PubMed ID: 20157927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon nanotubes as nanotexturing agents for high power supercapacitors based on seaweed carbons.
    Raymundo-Piñero E; Cadek M; Wachtler M; Béguin F
    ChemSusChem; 2011 Jul; 4(7):943-9. PubMed ID: 21302364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexible energy storage devices based on nanocomposite paper.
    Pushparaj VL; Shaijumon MM; Kumar A; Murugesan S; Ci L; Vajtai R; Linhardt RJ; Nalamasu O; Ajayan PM
    Proc Natl Acad Sci U S A; 2007 Aug; 104(34):13574-7. PubMed ID: 17699622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hedgehog-inspired nanostructures for hydrogel-based all-solid-state hybrid supercapacitors with excellent flexibility and electrochemical performance.
    Sun P; He W; Yang H; Cao R; Yin J; Wang C; Xu X
    Nanoscale; 2018 Oct; 10(40):19004-19013. PubMed ID: 30198035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchically porous carbon with manganese oxides as highly efficient electrode for asymmetric supercapacitors.
    Chou TC; Doong RA; Hu CC; Zhang B; Su DS
    ChemSusChem; 2014 Mar; 7(3):841-7. PubMed ID: 24504702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface design and engineering of hierarchical hybrid nanostructures for asymmetric supercapacitors with improved electrochemical performance.
    Achilleos DS; Hatton TA
    J Colloid Interface Sci; 2015 Jun; 447():282-301. PubMed ID: 25711524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational Design of a Flexible CNTs@PDMS Film Patterned by Bio-Inspired Templates as a Strain Sensor and Supercapacitor.
    Zhang C; Li H; Huang A; Zhang Q; Rui K; Lin H; Sun G; Zhu J; Peng H; Huang W
    Small; 2019 May; 15(18):e1805493. PubMed ID: 30945787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Core-shell carbon-coated CuO nanocomposites: a highly stable electrode material for supercapacitors and lithium-ion batteries.
    Wen T; Wu XL; Zhang S; Wang X; Xu AW
    Chem Asian J; 2015 Mar; 10(3):595-601. PubMed ID: 25663599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. All-in-One Graphene Based Composite Fiber: Toward Wearable Supercapacitor.
    Lim L; Liu Y; Liu W; Tjandra R; Rasenthiram L; Chen Z; Yu A
    ACS Appl Mater Interfaces; 2017 Nov; 9(45):39576-39583. PubMed ID: 29099572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asymmetric carbon nanotube-MnO₂ two-ply yarn supercapacitors for wearable electronics.
    Su F; Miao M
    Nanotechnology; 2014 Apr; 25(13):135401. PubMed ID: 24583526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-Supporting GaN Nanowires/Graphite Paper: Novel High-Performance Flexible Supercapacitor Electrodes.
    Wang S; Sun C; Shao Y; Wu Y; Zhang L; Hao X
    Small; 2017 Feb; 13(8):. PubMed ID: 27982526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-performance two-ply yarn supercapacitors based on carbon nanotube yarns dotted with Co3 O4 and NiO nanoparticles.
    Su F; Lv X; Miao M
    Small; 2015 Feb; 11(7):854-61. PubMed ID: 25277293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thread-like supercapacitors based on one-step spun nanocomposite yarns.
    Meng Q; Wang K; Guo W; Fang J; Wei Z; She X
    Small; 2014 Aug; 10(15):3187-93. PubMed ID: 24729355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and characterization of aligned carbon nanotube-ruthenium oxide nanocomposites for supercapacitors.
    Ye JS; Cui HF; Liu X; Lim TM; Zhang WD; Sheu FS
    Small; 2005 May; 1(5):560-5. PubMed ID: 17193486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shape-Tailorable Graphene-Based Ultra-High-Rate Supercapacitor for Wearable Electronics.
    Xie B; Yang C; Zhang Z; Zou P; Lin Z; Shi G; Yang Q; Kang F; Wong CP
    ACS Nano; 2015 Jun; 9(6):5636-45. PubMed ID: 25938988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Bamboo-Inspired Nanostructure Design for Flexible, Foldable, and Twistable Energy Storage Devices.
    Sun Y; Sills RB; Hu X; Seh ZW; Xiao X; Xu H; Luo W; Jin H; Xin Y; Li T; Zhang Z; Zhou J; Cai W; Huang Y; Cui Y
    Nano Lett; 2015 Jun; 15(6):3899-906. PubMed ID: 26011653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.