These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 28058792)
21. Carbon-Based Materials for Lithium-Ion Batteries, Electrochemical Capacitors, and Their Hybrid Devices. Yao F; Pham DT; Lee YH ChemSusChem; 2015 Jul; 8(14):2284-311. PubMed ID: 26140707 [TBL] [Abstract][Full Text] [Related]
22. Designed Construction of a Graphene and Iron Oxide Freestanding Electrode with Enhanced Flexible Energy-Storage Performance. Li M; Pan F; Choo ES; Lv Y; Chen Y; Xue J ACS Appl Mater Interfaces; 2016 Mar; 8(11):6972-81. PubMed ID: 26926985 [TBL] [Abstract][Full Text] [Related]
23. Crystallinity-controlled titanium oxide-carbon nanocomposites with enhanced lithium storage performance. Zhou Y; Lee J; Lee CW; Wu M; Yoon S ChemSusChem; 2012 Dec; 5(12):2376-82. PubMed ID: 23109490 [TBL] [Abstract][Full Text] [Related]
24. Injectable in situ cross-linkable nanocomposites of biodegradable polymers and carbon nanostructures for bone tissue engineering. Sitharaman B; Shi X; Tran LA; Spicer PP; Rusakova I; Wilson LJ; Mikos AG J Biomater Sci Polym Ed; 2007; 18(6):655-71. PubMed ID: 17623549 [TBL] [Abstract][Full Text] [Related]
25. Effects of carbon nanotubes and metal catalysts on hydrogen storage in magnesium nanocomposites. Yao X; Wu CZ; Wang H; Cheng HM; Lu GQ J Nanosci Nanotechnol; 2006 Feb; 6(2):494-8. PubMed ID: 16573050 [TBL] [Abstract][Full Text] [Related]
26. Spray-painted binder-free SnSe electrodes for high-performance energy-storage devices. Wang X; Liu B; Xiang Q; Wang Q; Hou X; Chen D; Shen G ChemSusChem; 2014 Jan; 7(1):308-13. PubMed ID: 24339208 [TBL] [Abstract][Full Text] [Related]
27. Carbon Nanotube Nanocomposites with Highly Enhanced Strength and Conductivity for Flexible Electric Circuits. Hwang JY; Kim HS; Kim JH; Shin US; Lee SH Langmuir; 2015 Jul; 31(28):7844-51. PubMed ID: 26107468 [TBL] [Abstract][Full Text] [Related]
29. Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes. Cheng Y; Zhang H; Lu S; Varanasi CV; Liu J Nanoscale; 2013 Feb; 5(3):1067-73. PubMed ID: 23254316 [TBL] [Abstract][Full Text] [Related]
30. A flexible, transparent and super-long-life supercapacitor based on ultrafine Co3O4 nanocrystal electrodes. Liu XY; Gao YQ; Yang GW Nanoscale; 2016 Feb; 8(7):4227-35. PubMed ID: 26838964 [TBL] [Abstract][Full Text] [Related]
31. Interwoven Carbon Nanotube Wires for High-Performing, Mechanically Robust, Washable, and Wearable Supercapacitors. Jha MK; Hata K; Subramaniam C ACS Appl Mater Interfaces; 2019 May; 11(20):18285-18294. PubMed ID: 31034194 [TBL] [Abstract][Full Text] [Related]
32. Metallic Fabrics as the Current Collector for High-Performance Graphene-Based Flexible Solid-State Supercapacitor. Yu J; Wu J; Wang H; Zhou A; Huang C; Bai H; Li L ACS Appl Mater Interfaces; 2016 Feb; 8(7):4724-9. PubMed ID: 26830192 [TBL] [Abstract][Full Text] [Related]
33. On the configuration of supercapacitors for maximizing electrochemical performance. Zhang J; Zhao XS ChemSusChem; 2012 May; 5(5):818-41. PubMed ID: 22550045 [TBL] [Abstract][Full Text] [Related]
34. Directly grown nanostructured electrodes for high volumetric energy density binder-free hybrid supercapacitors: a case study of CNTs//Li4Ti5O12. Zuo W; Wang C; Li Y; Liu J Sci Rep; 2015 Jan; 5():7780. PubMed ID: 25586374 [TBL] [Abstract][Full Text] [Related]
35. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. Xu Y; Lin Z; Huang X; Liu Y; Huang Y; Duan X ACS Nano; 2013 May; 7(5):4042-9. PubMed ID: 23550832 [TBL] [Abstract][Full Text] [Related]
36. Oxygen Evolution Assisted Fabrication of Highly Loaded Carbon Nanotube/MnO2 Hybrid Films for High-Performance Flexible Pseudosupercapacitors. Chen H; Zeng S; Chen M; Zhang Y; Zheng L; Li Q Small; 2016 Apr; 12(15):2035-45. PubMed ID: 26929042 [TBL] [Abstract][Full Text] [Related]
37. An enhanced biosensor for glutamate based on self-assembled carbon nanotubes and dendrimer-encapsulated platinum nanobiocomposites-doped polypyrrole film. Tang L; Zhu Y; Yang X; Li C Anal Chim Acta; 2007 Jul; 597(1):145-50. PubMed ID: 17658324 [TBL] [Abstract][Full Text] [Related]
38. Exploring aligned-carbon-nanotubes@polyaniline arrays on household Al as supercapacitors. Huang F; Lou F; Chen D ChemSusChem; 2012 May; 5(5):888-95. PubMed ID: 22411903 [TBL] [Abstract][Full Text] [Related]
39. Continuous Preparation of Copper/Carbon Nanotube Composite Films and Application in Solar Cells. Luo XG; Le Wu M; Wang XX; Zhong XH; Zhao K; Wang JN ChemSusChem; 2016 Feb; 9(3):296-301. PubMed ID: 26784865 [TBL] [Abstract][Full Text] [Related]
40. Edge-enriched, porous carbon-based, high energy density supercapacitors for hybrid electric vehicles. Kim YJ; Yang CM; Park KC; Kaneko K; Kim YA; Noguchi M; Fujino T; Oyama S; Endo M ChemSusChem; 2012 Mar; 5(3):535-41. PubMed ID: 22378623 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]