These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 28058807)
1. A New Triazine-Based Covalent Organic Framework for High-Performance Capacitive Energy Storage. Bhanja P; Bhunia K; Das SK; Pradhan D; Kimura R; Hijikata Y; Irle S; Bhaumik A ChemSusChem; 2017 Mar; 10(5):921-929. PubMed ID: 28058807 [TBL] [Abstract][Full Text] [Related]
2. Ultrastable Triazine-Based Covalent Organic Framework with an Interlayer Hydrogen Bonding for Supercapacitor Applications. Li L; Lu F; Xue R; Ma B; Li Q; Wu N; Liu H; Yao W; Guo H; Yang W ACS Appl Mater Interfaces; 2019 Jul; 11(29):26355-26363. PubMed ID: 31260241 [TBL] [Abstract][Full Text] [Related]
3. Conductive Microporous Covalent Triazine-Based Framework for High-Performance Electrochemical Capacitive Energy Storage. Li Y; Zheng S; Liu X; Li P; Sun L; Yang R; Wang S; Wu ZS; Bao X; Deng WQ Angew Chem Int Ed Engl; 2018 Jul; 57(27):7992-7996. PubMed ID: 29135063 [TBL] [Abstract][Full Text] [Related]
4. A new benzimidazole based covalent organic polymer having high energy storage capacity. Patra BC; Khilari S; Satyanarayana L; Pradhan D; Bhaumik A Chem Commun (Camb); 2016 Jun; 52(48):7592-5. PubMed ID: 27222226 [TBL] [Abstract][Full Text] [Related]
5. Preparation of energy storage material derived from a used cigarette filter for a supercapacitor electrode. Lee M; Kim GP; Don Song H; Park S; Yi J Nanotechnology; 2014 Aug; 25(34):345601. PubMed ID: 25092115 [TBL] [Abstract][Full Text] [Related]
6. A Hollow Microtubular Triazine- and Benzobisoxazole-Based Covalent Organic Framework Presenting Sponge-Like Shells That Functions as a High-Performance Supercapacitor. El-Mahdy AFM; Hung YH; Mansoure TH; Yu HH; Chen T; Kuo SW Chem Asian J; 2019 May; 14(9):1429-1435. PubMed ID: 30817093 [TBL] [Abstract][Full Text] [Related]
7. Bipolar Supercapacitive Performance of N-Containing Carbon Materials Derived from Covalent Triazine-Based Framework. Maity A; Siebels M; Jana A; Eswaran M; Dhanusuraman R; Janiak C; Bhunia A ChemSusChem; 2024 Sep; ():e202401716. PubMed ID: 39228217 [TBL] [Abstract][Full Text] [Related]
8. Influence of reactivation on the electrochemical performances of activated carbon based on coconut shell. Geng X; Li L; Zhang M; An B; Zhu X J Environ Sci (China); 2013 Dec; 25 Suppl 1():S110-7. PubMed ID: 25078811 [TBL] [Abstract][Full Text] [Related]
9. Microtube bundle carbon derived from Paulownia sawdust for hybrid supercapacitor electrodes. Liu X; Zheng M; Xiao Y; Yang Y; Yang L; Liu Y; Lei B; Dong H; Zhang H; Fu H ACS Appl Mater Interfaces; 2013 Jun; 5(11):4667-77. PubMed ID: 23688158 [TBL] [Abstract][Full Text] [Related]
10. Ultrastable Covalent Triazine Organic Framework Based on Anthracene Moiety as Platform for High-Performance Carbon Dioxide Adsorption and Supercapacitors. Mohamed MG; Sharma SU; Liu NY; Mansoure TH; Samy MM; Chaganti SV; Chang YL; Lee JT; Kuo SW Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328595 [TBL] [Abstract][Full Text] [Related]
11. One-step synthesis and electrochemical performance of a PbMoO Anitha T; Reddy AE; Anil Kumar Y; Cho YR; Kim HJ Dalton Trans; 2019 Jul; 48(28):10652-10660. PubMed ID: 31233064 [TBL] [Abstract][Full Text] [Related]
12. Electrochemical performance of l-tryptophanium picrate as an efficient electrode material for supercapacitor application. Srinivasan R; Elaiyappillai E; Gowri S; Bella A; Sathiyan A; Meenatchi B; Merlin JP Phys Chem Chem Phys; 2019 Jun; 21(22):11829-11838. PubMed ID: 31115409 [TBL] [Abstract][Full Text] [Related]
13. Self-limiting electrodeposition of hierarchical MnO₂ and M(OH)₂/MnO₂ nanofibril/nanowires: mechanism and supercapacitor properties. Duay J; Sherrill SA; Gui Z; Gillette E; Lee SB ACS Nano; 2013 Feb; 7(2):1200-14. PubMed ID: 23327566 [TBL] [Abstract][Full Text] [Related]
14. Two π-Conjugated Covalent Organic Frameworks with Long-Term Cyclability at High Current Density for Lithium Ion Battery. Chen H; Zhang Y; Xu C; Cao M; Dou H; Zhang X Chemistry; 2019 Dec; 25(68):15472-15476. PubMed ID: 31523858 [TBL] [Abstract][Full Text] [Related]
15. Cobalt-Based Layered Metal-Organic Framework as an Ultrahigh Capacity Supercapacitor Electrode Material. Liu X; Shi C; Zhai C; Cheng M; Liu Q; Wang G ACS Appl Mater Interfaces; 2016 Feb; 8(7):4585-91. PubMed ID: 26829547 [TBL] [Abstract][Full Text] [Related]
16. Conjugated Microporous Polymers Based on Ferrocene Units as Highly Efficient Electrodes for Energy Storage. Samy MM; Mohamed MG; Kuo SW Polymers (Basel); 2023 Feb; 15(5):. PubMed ID: 36904335 [TBL] [Abstract][Full Text] [Related]
17. Triazine covalent organic framework (COF)/θ-Al Liu L; Cui D; Zhang S; Xie W; Yao C; Xu N; Xu Y Dalton Trans; 2023 May; 52(18):6138-6145. PubMed ID: 37070778 [TBL] [Abstract][Full Text] [Related]
18. Carbonized Aminal-Linked Porous Organic Polymers Containing Pyrene and Triazine Units for Gas Uptake and Energy Storage. Mousa AO; Mohamed MG; Chuang CH; Kuo SW Polymers (Basel); 2023 Apr; 15(8):. PubMed ID: 37112038 [TBL] [Abstract][Full Text] [Related]
19. Activated carbon derived from melaleuca barks for outstanding high-rate supercapacitors. Luo QP; Huang L; Gao X; Cheng Y; Yao B; Hu Z; Wan J; Xiao X; Zhou J Nanotechnology; 2015 Jul; 26(30):304004. PubMed ID: 26152815 [TBL] [Abstract][Full Text] [Related]
20. Three-dimensional ordered macroporous MnO2/carbon nanocomposites as high-performance electrodes for asymmetric supercapacitors. Yang C; Zhou M; Xu Q Phys Chem Chem Phys; 2013 Dec; 15(45):19730-40. PubMed ID: 24141452 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]