These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 28058807)

  • 21. Hybrid nanostructured C-dot decorated Fe3O4 electrode materials for superior electrochemical energy storage performance.
    Bhattacharya K; Deb P
    Dalton Trans; 2015 May; 44(19):9221-9. PubMed ID: 25909760
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Graphene oxide-based benzimidazole-crosslinked networks for high-performance supercapacitors.
    Cui Y; Cheng QY; Wu H; Wei Z; Han BH
    Nanoscale; 2013 Sep; 5(18):8367-74. PubMed ID: 23793833
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Palladium(II) and platinum(II) complexes of a symmetric Schiff base derived from 2,6,diformyl-4-methylphenol with N-aminopyrimidine: synthesis, characterization and detection of DNA interaction by voltammetry.
    Sönmez M; Celebi M; Yardim Y; Sentürk Z
    Eur J Med Chem; 2010 Sep; 45(9):4215-20. PubMed ID: 20619510
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Flower-Like MoS
    Majumder S; Banerjee S
    Microsc Microanal; 2019 Dec; 25(6):1394-1400. PubMed ID: 31452487
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Three-dimensional hierarchically ordered porous carbons with partially graphitic nanostructures for electrochemical capacitive energy storage.
    Huang CH; Zhang Q; Chou TC; Chen CM; Su DS; Doong RA
    ChemSusChem; 2012 Mar; 5(3):563-71. PubMed ID: 22383382
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Facile coating of manganese oxide on tin oxide nanowires with high-performance capacitive behavior.
    Yan J; Khoo E; Sumboja A; Lee PS
    ACS Nano; 2010 Jul; 4(7):4247-55. PubMed ID: 20593844
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preparation of Fe3O4 with high specific surface area and improved capacitance as a supercapacitor.
    Wang L; Ji H; Wang S; Kong L; Jiang X; Yang G
    Nanoscale; 2013 May; 5(9):3793-9. PubMed ID: 23512007
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Layered Structural Co-Based MOF with Conductive Network Frames as a New Supercapacitor Electrode.
    Yang J; Ma Z; Gao W; Wei M
    Chemistry; 2017 Jan; 23(3):631-636. PubMed ID: 27785880
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanostructured Electrode Materials Derived from Metal-Organic Framework Xerogels for High-Energy-Density Asymmetric Supercapacitor.
    Mahmood A; Zou R; Wang Q; Xia W; Tabassum H; Qiu B; Zhao R
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2148-57. PubMed ID: 26720405
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Covalent surface modification of chemically derived graphene and its application as supercapacitor electrode material.
    Jana M; Khanra P; Murmu NC; Samanta P; Lee JH; Kuila T
    Phys Chem Chem Phys; 2014 Apr; 16(16):7618-26. PubMed ID: 24643242
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydroxyl-Functionalized Covalent Organic Frameworks as High-Performance Supercapacitors.
    Yang TL; Chen JY; Kuo SW; Lo CT; El-Mahdy AFM
    Polymers (Basel); 2022 Aug; 14(16):. PubMed ID: 36015687
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrosynthesis of neodymium oxide nanorods and its nanocomposite with conjugated conductive polymer as a hybrid electrode material for highly capacitive pseudocapacitors.
    Mohammad Shiri H; Ehsani A
    J Colloid Interface Sci; 2017 Jun; 495():102-110. PubMed ID: 28189953
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Polyaniline-Stabilized Intertwined Network-like Ferrocene/Graphene Nanoarchitecture for Supercapacitor Application.
    Adhikari A; Oraon R; Tiwari SK; Jena NK; Lee JH; Kim NH; Nayak GC
    Chem Asian J; 2017 Apr; 12(8):900-909. PubMed ID: 28225566
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hierarchically porous carbon with manganese oxides as highly efficient electrode for asymmetric supercapacitors.
    Chou TC; Doong RA; Hu CC; Zhang B; Su DS
    ChemSusChem; 2014 Mar; 7(3):841-7. PubMed ID: 24504702
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Facile Synthesis of Nitrogen-Containing Mesoporous Carbon for High-Performance Energy Storage Applications.
    Xu Y; Wang J; Chang Z; Ding B; Wang Y; Shen L; Mi C; Dou H; Zhang X
    Chemistry; 2016 Mar; 22(12):4256-62. PubMed ID: 26849174
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Few-layered MoSe2 nanosheets as an advanced electrode material for supercapacitors.
    Balasingam SK; Lee JS; Jun Y
    Dalton Trans; 2015 Sep; 44(35):15491-8. PubMed ID: 26239099
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Superior pseudocapacitive behavior of confined lignin nanocrystals for renewable energy-storage materials.
    Kim SK; Kim YK; Lee H; Lee SB; Park HS
    ChemSusChem; 2014 Apr; 7(4):1094-101. PubMed ID: 24678040
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis of novel tripodal-benzimidazole from 2,4,6-tris(p-formylphenoxy)-1,3,5-triazine: structural, electrochemical and antimicrobial studies.
    Koc ZE; Bingol H; Saf AO; Torlak E; Coskun A
    J Hazard Mater; 2010 Nov; 183(1-3):251-5. PubMed ID: 20675052
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Facile Green Synthesis of BCN Nanosheets as High-Performance Electrode Material for Electrochemical Energy Storage.
    Karbhal I; Devarapalli RR; Debgupta J; Pillai VK; Ajayan PM; Shelke MV
    Chemistry; 2016 May; 22(21):7134-40. PubMed ID: 27072914
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simple synthesis of amorphous NiWO4 nanostructure and its application as a novel cathode material for asymmetric supercapacitors.
    Niu L; Li Z; Xu Y; Sun J; Hong W; Liu X; Wang J; Yang S
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):8044-52. PubMed ID: 23910723
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.