BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 28058815)

  • 1. Small RNAome profiling from human skeletal muscle: novel miRNAs and their targets associated with cancer cachexia.
    Narasimhan A; Ghosh S; Stretch C; Greiner R; Bathe OF; Baracos V; Damaraju S
    J Cachexia Sarcopenia Muscle; 2017 Jun; 8(3):405-416. PubMed ID: 28058815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Pathway to Cancer Cachexia: MicroRNA-Regulated Networks in Muscle Wasting Based on Integrative Meta-Analysis.
    Freire PP; Fernandez GJ; Cury SS; de Moraes D; Oliveira JS; de Oliveira G; Dal-Pai-Silva M; Dos Reis PP; Carvalho RF
    Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31013615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of microRNAs in skeletal muscle associated with lung cancer cachexia.
    van de Worp WRPH; Schols AMWJ; Dingemans AC; Op den Kamp CMH; Degens JHRJ; Kelders MCJM; Coort S; Woodruff HC; Kratassiouk G; Harel-Bellan A; Theys J; van Helvoort A; Langen RCJ
    J Cachexia Sarcopenia Muscle; 2020 Apr; 11(2):452-463. PubMed ID: 31828982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differentially expressed alternatively spliced genes in skeletal muscle from cancer patients with cachexia.
    Narasimhan A; Greiner R; Bathe OF; Baracos V; Damaraju S
    J Cachexia Sarcopenia Muscle; 2018 Feb; 9(1):60-70. PubMed ID: 28984045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic profiling of messenger RNAs and microRNAs reveals potential mechanisms of TWEAK-induced skeletal muscle wasting in mice.
    Panguluri SK; Bhatnagar S; Kumar A; McCarthy JJ; Srivastava AK; Cooper NG; Lundy RF; Kumar A
    PLoS One; 2010 Jan; 5(1):e8760. PubMed ID: 20098732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and Expression Profiling of miRNAome in Goat longissimus dorsi Muscle from Prenatal Stages to a Neonatal Stage.
    Guo J; Zhao W; Zhan S; Li L; Zhong T; Wang L; Dong Y; Zhang H
    PLoS One; 2016; 11(10):e0165764. PubMed ID: 27798673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overexpression of microRNA-206 in the skeletal muscle from myotonic dystrophy type 1 patients.
    Gambardella S; Rinaldi F; Lepore SM; Viola A; Loro E; Angelini C; Vergani L; Novelli G; Botta A
    J Transl Med; 2010 May; 8():48. PubMed ID: 20487562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altered miRNA and mRNA Expression in Sika Deer Skeletal Muscle with Age.
    Jia B; Liu Y; Li Q; Zhang J; Ge C; Wang G; Chen G; Liu D; Yang F
    Genes (Basel); 2020 Feb; 11(2):. PubMed ID: 32041309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A systematic analysis of the skeletal muscle miRNA transcriptome of chicken varieties with divergent skeletal muscle growth identifies novel miRNAs and differentially expressed miRNAs.
    Li T; Wu R; Zhang Y; Zhu D
    BMC Genomics; 2011 Apr; 12():186. PubMed ID: 21486491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supplemental carnitine affects the microRNA expression profile in skeletal muscle of obese Zucker rats.
    Keller J; Ringseis R; Eder K
    BMC Genomics; 2014 Jun; 15(1):512. PubMed ID: 24952657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA sequencing for global gene expression associated with muscle growth in a single male modern broiler line compared to a foundational Barred Plymouth Rock chicken line.
    Kong BW; Hudson N; Seo D; Lee S; Khatri B; Lassiter K; Cook D; Piekarski A; Dridi S; Anthony N; Bottje W
    BMC Genomics; 2017 Jan; 18(1):82. PubMed ID: 28086790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MicroRNA transcriptome profiling of mice brains infected with Japanese encephalitis virus by RNA sequencing.
    Li XF; Cao RB; Luo J; Fan JM; Wang JM; Zhang YP; Gu JY; Feng XL; Zhou B; Chen PY
    Infect Genet Evol; 2016 Apr; 39():249-257. PubMed ID: 26845346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MicroRNA expression and gene regulation drive breast cancer progression and metastasis in PyMT mice.
    Nogales-Cadenas R; Cai Y; Lin JR; Zhang Q; Zhang W; Montagna C; Zhang ZD
    Breast Cancer Res; 2016 Jul; 18(1):75. PubMed ID: 27449149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Next-generation sequencing of the porcine skeletal muscle transcriptome for computational prediction of microRNA gene targets.
    McDaneld TG; Smith TP; Harhay GP; Wiedmann RT
    PLoS One; 2012; 7(7):e42039. PubMed ID: 22848698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Next generation sequencing profiling identifies miR-574-3p and miR-660-5p as potential novel prognostic markers for breast cancer.
    Krishnan P; Ghosh S; Wang B; Li D; Narasimhan A; Berendt R; Graham K; Mackey JR; Kovalchuk O; Damaraju S
    BMC Genomics; 2015 Sep; 16():735. PubMed ID: 26416693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The time-course of cancer cachexia onset reveals biphasic transcriptional disruptions in female skeletal muscle distinct from males.
    Morena da Silva F; Lim S; Cabrera AR; Schrems ER; Jones RG; Rosa-Caldwell ME; Washington TA; Murach KA; Greene NP
    BMC Genomics; 2023 Jul; 24(1):374. PubMed ID: 37403010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Key miRNAs and target genes played roles in the development of clear cell renal cell carcinoma.
    Liu J; Liu B; Guo Y; Chen Z; Sun W; Gao W; Wu H; Wang Y
    Cancer Biomark; 2018; 23(2):279-290. PubMed ID: 30198869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myokines in treatment-naïve patients with cancer-associated cachexia.
    de Castro GS; Correia-Lima J; Simoes E; Orsso CE; Xiao J; Gama LR; Gomes SP; Gonçalves DC; Costa RGF; Radloff K; Lenz U; Taranko AE; Bin FC; Formiga FB; de Godoy LGL; de Souza RP; Nucci LHA; Feitoza M; de Castro CC; Tokeshi F; Alcantara PSM; Otoch JP; Ramos AF; Laviano A; Coletti D; Mazurak VC; Prado CM; Seelaender M
    Clin Nutr; 2021 Apr; 40(4):2443-2455. PubMed ID: 33190987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Valproic acid attenuates skeletal muscle wasting by inhibiting C/EBPβ-regulated atrogin1 expression in cancer cachexia.
    Sun R; Zhang S; Hu W; Lu X; Lou N; Yang Z; Chen S; Zhang X; Yang H
    Am J Physiol Cell Physiol; 2016 Jul; 311(1):C101-15. PubMed ID: 27122162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and functional analysis of a potential key lncRNA involved in fat loss of cancer cachexia.
    Liu H; Zhou T; Wang B; Li L; Ye D; Yu S
    J Cell Biochem; 2018 Feb; 119(2):1679-1688. PubMed ID: 28782835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.