These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 28059061)

  • 1. Quantum state readout of individual quantum dots by electrostatic force detection.
    Miyahara Y; Roy-Gobeil A; Grutter P
    Nanotechnology; 2017 Feb; 28(6):064001. PubMed ID: 28059061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Revealing energy level structure of individual quantum dots by tunneling rate measured by single-electron sensitive electrostatic force spectroscopy.
    Roy-Gobeil A; Miyahara Y; Grutter P
    Nano Lett; 2015 Apr; 15(4):2324-8. PubMed ID: 25761141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of single-electron charging in an individual InAs quantum dot by noncontact atomic-force microscopy.
    Stomp R; Miyahara Y; Schaer S; Sun Q; Guo H; Grutter P; Studenikin S; Poole P; Sachrajda A
    Phys Rev Lett; 2005 Feb; 94(5):056802. PubMed ID: 15783674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excited-state spectroscopy on an individual quantum dot using atomic force microscopy.
    Cockins L; Miyahara Y; Bennett SD; Clerk AA; Grutter P
    Nano Lett; 2012 Feb; 12(2):709-13. PubMed ID: 22200076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electric Field Control of Molecular Charge State in a Single-Component 2D Organic Nanoarray.
    Kumar D; Krull C; Yin Y; Medhekar NV; Schiffrin A
    ACS Nano; 2019 Oct; 13(10):11882-11890. PubMed ID: 31584795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size-dependent energy levels of InSb quantum dots measured by scanning tunneling spectroscopy.
    Wang T; Vaxenburg R; Liu W; Rupich SM; Lifshitz E; Efros AL; Talapin DV; Sibener SJ
    ACS Nano; 2015 Jan; 9(1):725-32. PubMed ID: 25531244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Periodic Charging of Individual Molecules Coupled to the Motion of an Atomic Force Microscopy Tip.
    Kocić N; Weiderer P; Keller S; Decurtins S; Liu SX; Repp J
    Nano Lett; 2015 Jul; 15(7):4406-11. PubMed ID: 26039575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectral properties of multiply charged semiconductor quantum dots.
    Yalcin SE; Labastide JA; Sowle DL; Barnes MD
    Nano Lett; 2011 Oct; 11(10):4425-30. PubMed ID: 21905683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scanned probe imaging of single-electron charge states in nanotube quantum dots.
    Woodside MT; McEuen PL
    Science; 2002 May; 296(5570):1098-101. PubMed ID: 12004123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Room-temperature single-electron charging detected by electrostatic force microscopy.
    Tekiel A; Miyahara Y; Topple JM; Grutter P
    ACS Nano; 2013 May; 7(5):4683-90. PubMed ID: 23638691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable Magnetic Coupling in Graphene Nanoribbon Quantum Dots.
    Jacobse PH; Sarker M; Saxena A; Zahl P; Wang Z; Berger E; Aluru NR; Sinitskii A; Crommie MF
    Small; 2024 Feb; ():e2400473. PubMed ID: 38412424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical probing of quantum energy levels in a single indium arsenide (InAs) quantum dot.
    Rezeq M; Abbas Y; Wen B; Wasilewski Z; Ban D
    Nanoscale Adv; 2023 Oct; 5(20):5562-5569. PubMed ID: 37822897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modular apparatus for electrostatic actuation of common atomic force microscope cantilevers.
    Long CJ; Cannara RJ
    Rev Sci Instrum; 2015 Jul; 86(7):073703. PubMed ID: 26233392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy levels of few-electron quantum dots imaged and characterized by atomic force microscopy.
    Cockins L; Miyahara Y; Bennett SD; Clerk AA; Studenikin S; Poole P; Sachrajda A; Grutter P
    Proc Natl Acad Sci U S A; 2010 May; 107(21):9496-501. PubMed ID: 20457938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomic force microscopy of virus shells.
    de Pablo PJ
    Semin Cell Dev Biol; 2018 Jan; 73():199-208. PubMed ID: 28851598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exciton fine structure and spin relaxation in semiconductor colloidal quantum dots.
    Kim J; Wong CY; Scholes GD
    Acc Chem Res; 2009 Aug; 42(8):1037-46. PubMed ID: 19425542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formulation, characterization, and in vitro evaluation of quantum dots loaded in poly(lactide)-vitamin E TPGS nanoparticles for cellular and molecular imaging.
    Pan J; Wang Y; Feng SS
    Biotechnol Bioeng; 2008 Oct; 101(3):622-33. PubMed ID: 18727131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strong electronic coupling in two-dimensional assemblies of colloidal PbSe quantum dots.
    Williams KJ; Tisdale WA; Leschkies KS; Haugstad G; Norris DJ; Aydil ES; Zhu XY
    ACS Nano; 2009 Jun; 3(6):1532-8. PubMed ID: 19456114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum-dot antibody conjugation visualized at the single-molecule scale with high-speed atomic force microscopy.
    Umakoshi T; Udaka H; Uchihashi T; Ando T; Suzuki M; Fukuda T
    Colloids Surf B Biointerfaces; 2018 Jul; 167():267-274. PubMed ID: 29677598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanocarbon-scanning probe microscopy synergy: fundamental aspects to nanoscale devices.
    Kurra N; Reifenberger RG; Kulkarni GU
    ACS Appl Mater Interfaces; 2014 May; 6(9):6147-63. PubMed ID: 24697666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.