These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 28059111)
1. Structural origin of fractional Stokes-Einstein relation in glass-forming liquids. Pan S; Wu ZW; Wang WH; Li MZ; Xu L Sci Rep; 2017 Jan; 7():39938. PubMed ID: 28059111 [TBL] [Abstract][Full Text] [Related]
2. A structural signature of the breakdown of the Stokes-Einstein relation in metallic liquids. Pan SP; Feng SD; Qiao JW; Niu XF; Wang WM; Qin JY Phys Chem Chem Phys; 2017 Aug; 19(33):22094-22098. PubMed ID: 28795698 [TBL] [Abstract][Full Text] [Related]
3. Breakdown of the Stokes-Einstein relationship and rapid structural ordering in CuZrAl metallic glass-forming liquids. Chen FZ; Mauro NA; Bertrand SM; McGrath P; Zimmer L; Kelton KF J Chem Phys; 2021 Sep; 155(10):104501. PubMed ID: 34525827 [TBL] [Abstract][Full Text] [Related]
4. An alternative approach to evidence the structural conditioning in the dynamic slowdown in a polymer glass-former. Balbuena C; Soulé ER J Phys Condens Matter; 2020 Jan; 32(4):045401. PubMed ID: 31577994 [TBL] [Abstract][Full Text] [Related]
5. Transport properties of glass-forming liquids suggest that dynamic crossover temperature is as important as the glass transition temperature. Mallamace F; Branca C; Corsaro C; Leone N; Spooren J; Chen SH; Stanley HE Proc Natl Acad Sci U S A; 2010 Dec; 107(52):22457-62. PubMed ID: 21148100 [TBL] [Abstract][Full Text] [Related]
6. Dynamical, structural and chemical heterogeneities in a binary metallic glass-forming liquid. Puosi F; Jakse N; Pasturel A J Phys Condens Matter; 2018 Apr; 30(14):145701. PubMed ID: 29465041 [TBL] [Abstract][Full Text] [Related]
7. On enhanced translational diffusion or the fractional Stokes-Einstein relation observed in a supercooled ionic liquid. Ngai KL J Phys Chem B; 2006 Dec; 110(51):26211-4. PubMed ID: 17181278 [TBL] [Abstract][Full Text] [Related]
8. Critical scaling of icosahedral medium-range order in CuZr metallic glass-forming liquids. Wu ZW; Li FX; Huo CW; Li MZ; Wang WH; Liu KX Sci Rep; 2016 Oct; 6():35967. PubMed ID: 27779239 [TBL] [Abstract][Full Text] [Related]
9. The fractional Stokes-Einstein equation: application to Lennard-Jones, molecular, and ionic liquids. Harris KR J Chem Phys; 2009 Aug; 131(5):054503. PubMed ID: 19673570 [TBL] [Abstract][Full Text] [Related]
10. Power law relationship between diffusion coefficients in multi-component glass forming liquids. Parmar ADS; Sengupta S; Sastry S Eur Phys J E Soft Matter; 2018 Aug; 41(8):90. PubMed ID: 30078172 [TBL] [Abstract][Full Text] [Related]
11. Universal nature of dynamic heterogeneity in glass-forming liquids: A comparative study of metallic and polymeric glass-forming liquids. Wang X; Xu WS; Zhang H; Douglas JF J Chem Phys; 2019 Nov; 151(18):184503. PubMed ID: 31731847 [TBL] [Abstract][Full Text] [Related]
12. Translation-rotation decoupling of tracers of locally favorable structures in glass-forming liquids. Park Y; Kim J; Sung BJ J Chem Phys; 2017 Sep; 147(12):124503. PubMed ID: 28964043 [TBL] [Abstract][Full Text] [Related]
13. Translational dynamics of a rod-like probe in supercooled liquids: an experimentally realizable method to study Stokes-Einstein breakdown, dynamic heterogeneity, and amorphous order. Mutneja A; Karmakar S Soft Matter; 2021 Jun; 17(23):5738-5746. PubMed ID: 34018543 [TBL] [Abstract][Full Text] [Related]
14. On the relation between reorientation and diffusion in glass-forming ionic liquids with micro-heterogeneous structures. Becher M; Steinrücken E; Vogel M J Chem Phys; 2019 Nov; 151(19):194503. PubMed ID: 31757165 [TBL] [Abstract][Full Text] [Related]
15. Distribution of diffusion constants and Stokes-Einstein violation in supercooled liquids. Sengupta S; Karmakar S J Chem Phys; 2014 Jun; 140(22):224505. PubMed ID: 24929405 [TBL] [Abstract][Full Text] [Related]
16. A possible scenario for the fragile-to-strong dynamic crossover predicted by the extended mode-coupling theory for glass transition. Chong SH; Chen SH; Mallamace F J Phys Condens Matter; 2009 Dec; 21(50):504101. PubMed ID: 21836212 [TBL] [Abstract][Full Text] [Related]
17. Fractional Stokes-Einstein and Debye-Stokes-Einstein relations in a network-forming liquid. Becker SR; Poole PH; Starr FW Phys Rev Lett; 2006 Aug; 97(5):055901. PubMed ID: 17026116 [TBL] [Abstract][Full Text] [Related]
18. Signatures of fragile-to-strong transition in a binary metallic glass-forming liquid. Lad KN; Jakse N; Pasturel A J Chem Phys; 2012 Mar; 136(10):104509. PubMed ID: 22423850 [TBL] [Abstract][Full Text] [Related]
19. Heterogeneous diffusion, viscosity, and the Stokes-Einstein relation in binary liquids. Schober HR; Peng HL Phys Rev E; 2016 May; 93(5):052607. PubMed ID: 27300951 [TBL] [Abstract][Full Text] [Related]
20. Test of the fractional Debye-Stokes-Einstein equation in low-molecular-weight glass-forming liquids under condition of high compression. Bielowka SH; Psurek T; Ziolo J; Paluch M Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 1):062301. PubMed ID: 11415149 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]