These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 28059111)
21. Two-step relaxation and the breakdown of the Stokes-Einstein relation in glass-forming liquids. Mei B; Lu Y; An L; Wang ZG Phys Rev E; 2019 Nov; 100(5-1):052607. PubMed ID: 31869984 [TBL] [Abstract][Full Text] [Related]
22. Validity of the Stokes-Einstein relation in liquids: simple rules from the excess entropy. Pasturel A; Jakse N J Phys Condens Matter; 2016 Dec; 28(48):485101. PubMed ID: 27690250 [TBL] [Abstract][Full Text] [Related]
23. A fractal structural feature related to dynamic crossover in metallic glass-forming liquids. Chu W; Yu J; Ren N; Wang Z; Hu L Phys Chem Chem Phys; 2023 Feb; 25(5):4151-4160. PubMed ID: 36655679 [TBL] [Abstract][Full Text] [Related]
24. Does equilibrium polymerization describe the dynamic heterogeneity of glass-forming liquids? Douglas JF; Dudowicz J; Freed KF J Chem Phys; 2006 Oct; 125(14):144907. PubMed ID: 17042650 [TBL] [Abstract][Full Text] [Related]
25. Method to probe the pronounced growth of correlation lengths in active glass-forming liquids using an elongated probe. Mutneja A; Karmakar S Phys Rev E; 2023 Aug; 108(2):L022601. PubMed ID: 37723727 [TBL] [Abstract][Full Text] [Related]
29. Study of the upper-critical dimension of the East model through the breakdown of the Stokes-Einstein relation. Kim S; Thorpe DG; Noh C; Garrahan JP; Chandler D; Jung Y J Chem Phys; 2017 Aug; 147(8):084504. PubMed ID: 28863539 [TBL] [Abstract][Full Text] [Related]
30. Pressure effects on structure and dynamics of metallic glass-forming liquid. Hu YC; Guan PF; Wang Q; Yang Y; Bai HY; Wang WH J Chem Phys; 2017 Jan; 146(2):024507. PubMed ID: 28088136 [TBL] [Abstract][Full Text] [Related]
31. Spatial Dimensionality Dependence of Heterogeneity, Breakdown of the Stokes-Einstein Relation, and Fragility of a Model Glass-Forming Liquid. Adhikari M; Karmakar S; Sastry S J Phys Chem B; 2021 Sep; 125(36):10232-10239. PubMed ID: 34494429 [TBL] [Abstract][Full Text] [Related]
33. Theory of the viscosity of supercooled liquids and the glass transition: fragile liquids. Rah K; Eu BC Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 1):051204. PubMed ID: 14682791 [TBL] [Abstract][Full Text] [Related]
35. Breakdown of the Stokes-Einstein relation in supercooled liquids: A cage-jump perspective. Pastore R; Kikutsuji T; Rusciano F; Matubayasi N; Kim K; Greco F J Chem Phys; 2021 Sep; 155(11):114503. PubMed ID: 34551555 [TBL] [Abstract][Full Text] [Related]
36. The role of local-geometrical-orders on the growth of dynamic-length-scales in glass-forming liquids. Wong K; Krishnan RP; Chen C; Du Q; Yu D; Lu Z; Samwer K; Chathoth SM Sci Rep; 2018 Jan; 8(1):2025. PubMed ID: 29386575 [TBL] [Abstract][Full Text] [Related]
37. Slow relaxations and stringlike jump motions in fragile glass-forming liquids: breakdown of the Stokes-Einstein relation. Kawasaki T; Onuki A Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012312. PubMed ID: 23410336 [TBL] [Abstract][Full Text] [Related]
38. Dynamical properties of a room temperature ionic liquid: Using molecular dynamics simulations to implement a dynamic ion cage model. Sha M; Ma X; Li N; Luo F; Zhu G; Fayer MD J Chem Phys; 2019 Oct; 151(15):154502. PubMed ID: 31640381 [TBL] [Abstract][Full Text] [Related]
39. Dynamic decoupling and local atomic order of a model multicomponent metallic glass-former. Kim J; Sung BJ J Phys Condens Matter; 2015 Jun; 27(23):235102. PubMed ID: 25993620 [TBL] [Abstract][Full Text] [Related]
40. Configuration correlation governs slow dynamics of supercooled metallic liquids. Hu YC; Li YW; Yang Y; Guan PF; Bai HY; Wang WH Proc Natl Acad Sci U S A; 2018 Jun; 115(25):6375-6380. PubMed ID: 29866833 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]