BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 28059117)

  • 1. Non-invasive, Focused Ultrasound-Facilitated Gene Delivery for Optogenetics.
    Wang S; Kugelman T; Buch A; Herman M; Han Y; Karakatsani ME; Hussaini SA; Duff K; Konofagou EE
    Sci Rep; 2017 Jan; 7():39955. PubMed ID: 28059117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of Non-invasive Optogenetic Stimulation with Transcranial Functional Ultrasound Imaging.
    Aurup C; Pouliopoulos AN; Kwon N; Murillo MF; Konofagou EE
    Ultrasound Med Biol; 2023 Mar; 49(3):908-917. PubMed ID: 36460567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optogenetic Stimulation of the Central Amygdala Using Channelrhodopsin.
    Knes AS; Freeland CM; Robinson MJF
    Methods Mol Biol; 2021; 2191():351-376. PubMed ID: 32865754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of Optogenetics in Gene Therapy.
    Kushibiki T; Ishihara M
    Curr Gene Ther; 2018; 18(1):40-44. PubMed ID: 29512463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optogenetics to Interrogate Neuron-Glia Interactions in Pups and Adults.
    Habermacher C; Manot-Saillet B; Ortolani D; Ortiz FC; Angulo MC
    Methods Mol Biol; 2021; 2191():135-149. PubMed ID: 32865743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasound-Guided Optogenetic Gene Delivery for Shock-Free Ventricular Rhythm Restoration.
    Nyns ECA; Jin T; Bart CI; Bax WH; Zhang G; Poelma RH; de Vries AAF; Pijnappels DA
    Circ Arrhythm Electrophysiol; 2022 Jan; 15(1):e009886. PubMed ID: 34937394
    [No Abstract]   [Full Text] [Related]  

  • 7. Intracranial Injection of an Optogenetics Viral Vector Followed by Optical Cannula Implantation for Neural Stimulation in Rat Brain Cortex.
    Pawela C; DeYoe E; Pashaie R
    Methods Mol Biol; 2016; 1408():227-41. PubMed ID: 26965126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Longitudinal Motor and Behavioral Assessment of Blood-Brain Barrier Opening with Transcranial Focused Ultrasound.
    Olumolade OO; Wang S; Samiotaki G; Konofagou EE
    Ultrasound Med Biol; 2016 Sep; 42(9):2270-82. PubMed ID: 27339763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optogenetic induction of cortical spreading depression in anesthetized and freely behaving mice.
    Houben T; Loonen IC; Baca SM; Schenke M; Meijer JH; Ferrari MD; Terwindt GM; Voskuyl RA; Charles A; van den Maagdenberg AM; Tolner EA
    J Cereb Blood Flow Metab; 2017 May; 37(5):1641-1655. PubMed ID: 27107026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo neurovascular response to focused photoactivation of Channelrhodopsin-2.
    Mester JR; Bazzigaluppi P; Weisspapir I; Dorr A; Beckett TL; Koletar MM; Sled JG; Stefanovic B
    Neuroimage; 2019 May; 192():135-144. PubMed ID: 30669007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Vivo Intracerebral Stereotaxic Injections for Optogenetic Stimulation of Long-Range Inputs in Mouse Brain Slices.
    Richevaux L; Schenberg L; Beraneck M; Fricker D
    J Vis Exp; 2019 Sep; (151):. PubMed ID: 31589202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bicistronic Construct for Optogenetic Prosthesis of Ganglion Cell Receptive Field of Degenerative Retina.
    Petrovskaya LE; Roshchin MV; Smirnova GR; Kolotova DE; Balaban PM; Ostrovsky MA; Malyshev AY
    Dokl Biochem Biophys; 2019 May; 486(1):184-186. PubMed ID: 31367817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasound targeted CNS gene delivery for Parkinson's disease treatment.
    Fan CH; Lin CY; Liu HL; Yeh CK
    J Control Release; 2017 Sep; 261():246-262. PubMed ID: 28690161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expanding the brain researcher's toolkit.
    Gradinaru V
    Science; 2020 Aug; 369(6504):637. PubMed ID: 32764063
    [No Abstract]   [Full Text] [Related]  

  • 15. Considerations for the use of virally delivered genetic tools for in-vivo circuit analysis and behavior in mutant mice: a practical guide to optogenetics.
    Zelena D; Demeter K; Haller J; Balázsfi D
    Behav Pharmacol; 2017 Dec; 28(8):598-609. PubMed ID: 29099403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selecting Channelrhodopsin Constructs for Optimal Visual Restoration in Differing Light Conditions.
    Ganjawala TH; Pan ZH
    Methods Mol Biol; 2021; 2191():189-199. PubMed ID: 32865746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optogenetic Control of Cardiac Autonomic Neurons in Transgenic Mice.
    Moreno A; Kowalik G; Mendelowitz D; Kay MW
    Methods Mol Biol; 2021; 2191():309-321. PubMed ID: 32865752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learning-guided channelrhodopsin engineering enables minimally invasive optogenetics.
    Bedbrook CN; Yang KK; Robinson JE; Mackey ED; Gradinaru V; Arnold FH
    Nat Methods; 2019 Nov; 16(11):1176-1184. PubMed ID: 31611694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Focused ultrasound-induced blood-brain barrier opening for non-viral, non-invasive, and targeted gene delivery.
    Lin CY; Hsieh HY; Pitt WG; Huang CY; Tseng IC; Yeh CK; Wei KC; Liu HL
    J Control Release; 2015 Aug; 212():1-9. PubMed ID: 26071631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expanding the Optogenetics Toolkit by Topological Inversion of Rhodopsins.
    Brown J; Behnam R; Coddington L; Tervo DGR; Martin K; Proskurin M; Kuleshova E; Park J; Phillips J; Bergs ACF; Gottschalk A; Dudman JT; Karpova AY
    Cell; 2018 Nov; 175(4):1131-1140.e11. PubMed ID: 30343901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.