These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 28059136)

  • 1. Ultra-sensitive Pressure sensor based on guided straight mechanical cracks.
    Choi YW; Kang D; Pikhitsa PV; Lee T; Kim SM; Lee G; Tahk D; Choi M
    Sci Rep; 2017 Jan; 7():40116. PubMed ID: 28059136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crack-Based Sensor by Using the UV Curable Polyurethane-Acrylate Coated Film with V-Groove Arrays.
    Park J; Kim DS; Yoon Y; Shanmugasundaram A; Lee DW
    Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acid-Interface Engineering of Carbon Nanotube/Elastomers with Enhanced Sensitivity for Stretchable Strain Sensors.
    Chen S; Wu R; Li P; Li Q; Gao Y; Qian B; Xuan F
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):37760-37766. PubMed ID: 30284440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system.
    Kang D; Pikhitsa PV; Choi YW; Lee C; Shin SS; Piao L; Park B; Suh KY; Kim TI; Choi M
    Nature; 2014 Dec; 516(7530):222-6. PubMed ID: 25503234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micropatterning of Metal-Grid Micro Electro Mechanical Systems (MEMS) Sensor for Crack Detection Using Electrohydrodynamic Printing System.
    Lee YC; Leeghim H; Lee CY
    J Nanosci Nanotechnol; 2020 Jul; 20(7):4385-4389. PubMed ID: 31968480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. M13 Bacteriophage-Assisted Morphological Engineering of Crack-Based Sensors for Highly Sensitive and Wide Linear Range Strain Sensing.
    Kim KH; Nguyen TM; Ha SH; Choi EJ; Kim Y; Kim WG; Oh JW; Kim JM
    ACS Appl Mater Interfaces; 2020 Oct; 12(40):45590-45601. PubMed ID: 32914629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanostructuring mechanical cracks in a flexible conducting polymer thin film for ultra-sensitive vapor sensing.
    Sarkar B; Satapathy DK; Jaiswal M
    Nanoscale; 2018 Dec; 11(1):200-210. PubMed ID: 30525143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patterned Metal/Polymer Strain Sensor with Good Flexibility, Mechanical Stability and Repeatability for Human Motion Detection.
    Zheng X; Wang Q; Luan J; Li Y; Wang N
    Micromachines (Basel); 2019 Jul; 10(7):. PubMed ID: 31311117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mixed-mode stress intensity factors for kink cracks with finite kink length loaded in tension and bending: application to dentin and enamel.
    Bechtle S; Fett T; Rizzi G; Habelitz S; Schneider GA
    J Mech Behav Biomed Mater; 2010 May; 3(4):303-12. PubMed ID: 20346898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Metal Thickness on the Sensitivity of Crack-Based Sensors.
    Lee E; Kim T; Suh H; Kim M; Pikhitsa PV; Han S; Koh JS; Kang D
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30200306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nano-Cracked Strain Sensor with High Sensitivity and Linearity by Controlling the Crack Arrangement.
    Jung H; Park C; Lee H; Hong S; Kim H; Cho SJ
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31242680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon-Based, Ultraelastic, Hierarchically Coated Fiber Strain Sensors with Crack-Controllable Beads.
    Jang S; Kim J; Kim DW; Kim JW; Chun S; Lee HJ; Yi GR; Pang C
    ACS Appl Mater Interfaces; 2019 Apr; 11(16):15079-15087. PubMed ID: 30920201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection.
    Lee J; Kim S; Lee J; Yang D; Park BC; Ryu S; Park I
    Nanoscale; 2014 Oct; 6(20):11932-9. PubMed ID: 25175360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intelligent and highly sensitive strain sensor based on indium tin oxide micromesh with a high crack density.
    Qiao Y; Tang H; Liu H; Jian J; Ji S; Han F; Liu Z; Liu Y; Li Y; Cui T; Cai J; Gou G; Zhou B; Yang Y; Ren TL; Zhou J
    Nanoscale; 2022 Mar; 14(11):4234-4243. PubMed ID: 35234767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A High-Sensitivity Flexible Eddy Current Array Sensor for Crack Monitoring of Welded Structures under Varying Environment.
    Chen T; He Y; Du J
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29865189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasensitive Cracking-Assisted Strain Sensors Based on Silver Nanowires/Graphene Hybrid Particles.
    Chen S; Wei Y; Wei S; Lin Y; Liu L
    ACS Appl Mater Interfaces; 2016 Sep; 8(38):25563-70. PubMed ID: 27599264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A semi-permanent and durable nanoscale-crack-based sensor by on-demand healing.
    Park B; Lee S; Choi H; Kim JU; Hong H; Jeong C; Kang D; Kim TI
    Nanoscale; 2018 Mar; 10(9):4354-4360. PubMed ID: 29446419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crack Monitoring Method for an FRP-Strengthened Steel Structure Based on an Antenna Sensor.
    Liu Z; Chen K; Li Z; Jiang X
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29053614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crack Detecting Method Based on Grid-Type Sensing Networks Using Electrical Signals.
    Ahn JH; Lee YC; Jeong SM; Kim HN; Lee CY
    Sensors (Basel); 2023 Jul; 23(13):. PubMed ID: 37447942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced bendability of nanostructured metal electrodes: effect of nanoholes and their arrangement.
    Seo KW; Cho C; Jang HI; Park JH; Lee JY
    Nanoscale; 2020 Jun; 12(24):12898-12908. PubMed ID: 32520068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.