These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 28059150)

  • 1. Core-shell structured titanium-nitrogen alloys with high strength, high thermal stability and good plasticity.
    Zhang YS; Zhao YH; Zhang W; Lu JW; Hu JJ; Huo WT; Zhang PX
    Sci Rep; 2017 Jan; 7():40039. PubMed ID: 28059150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications.
    Nicula R; Lüthen F; Stir M; Nebe B; Burkel E
    Biomol Eng; 2007 Nov; 24(5):564-7. PubMed ID: 17869173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Pressure Spark Plasma Sintering (HP SPS): A Promising and Reliable Method for Preparing Ti-Al-Si Alloys.
    Knaislová A; Novák P; Cygan S; Jaworska L; Cabibbo M
    Materials (Basel); 2017 Apr; 10(5):. PubMed ID: 28772824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Core-Shell-Structured Particle Reinforced A356 Matrix Composite Prepared by Powder-Thixoforming: Effect of Reheating Temperature.
    Chen T; Geng L; Qin H; Gao M
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30217103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid Nitriding of Titanium Alloy with Fine Grains at Room Temperature.
    Fujita K; Ijiri M; Inoue Y; Kikuchi S
    Adv Mater; 2021 May; 33(20):e2008298. PubMed ID: 33939219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. β-Type Zr-Nb-Ti biomedical materials with high plasticity and low modulus for hard tissue replacements.
    Nie L; Zhan Y; Hu T; Chen X; Wang C
    J Mech Behav Biomed Mater; 2014 Jan; 29():1-6. PubMed ID: 24036526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. β-type Ti-10Mo-1.25Si-xZr biomaterials for applications in hard tissue replacements.
    Zhan Y; Li C; Jiang W
    Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1664-8. PubMed ID: 24364974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off.
    Li Z; Pradeep KG; Deng Y; Raabe D; Tasan CC
    Nature; 2016 Jun; 534(7606):227-30. PubMed ID: 27279217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ti
    Song X; Cui H; Han Y; Ding L; Song Q
    ACS Appl Mater Interfaces; 2018 May; 10(19):16783-16792. PubMed ID: 29688692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a new β Ti alloy with low modulus and favorable plasticity for implant material.
    Liang SX; Feng XJ; Yin LX; Liu XY; Ma MZ; Liu RP
    Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():338-43. PubMed ID: 26838858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Powder metallurgical low-modulus Ti-Mg alloys for biomedical applications.
    Liu Y; Li K; Luo T; Song M; Wu H; Xiao J; Tan Y; Cheng M; Chen B; Niu X; Hu R; Li X; Tang H
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():241-50. PubMed ID: 26249586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High strength nanostructured Al-based alloys through optimized processing of rapidly quenched amorphous precursors.
    Kim SY; Lee GY; Park GH; Kim HA; Lee AY; Scudino S; Prashanth KG; Kim DH; Eckert J; Lee MH
    Sci Rep; 2018 Jan; 8(1):1090. PubMed ID: 29348547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchical nanostructured aluminum alloy with ultrahigh strength and large plasticity.
    Wu G; Liu C; Sun L; Wang Q; Sun B; Han B; Kai JJ; Luan J; Liu CT; Cao K; Lu Y; Cheng L; Lu J
    Nat Commun; 2019 Nov; 10(1):5099. PubMed ID: 31704930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal Stability and Mechanical Behavior of Ultrafine-Grained Titanium with Different Impurity Content.
    Majchrowicz K; Sotniczuk A; Malicka J; Choińska E; Garbacz H
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36836969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of Nb on the β→α″ martensitic phase transformation and properties of the newly designed Ti-Fe-Nb alloys.
    Ehtemam-Haghighi S; Liu Y; Cao G; Zhang LC
    Mater Sci Eng C Mater Biol Appl; 2016 Mar; 60():503-510. PubMed ID: 26706557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal and mechanical characteristics of stainless steel, titanium-molybdenum, and nickel-titanium archwires.
    Kusy RP; Whitley JQ
    Am J Orthod Dentofacial Orthop; 2007 Feb; 131(2):229-37. PubMed ID: 17276864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical corrosion behavior and elasticity properties of Ti-6Al-xFe alloys for biomedical applications.
    Lu J; Zhao Y; Niu H; Zhang Y; Du Y; Zhang W; Huo W
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():36-44. PubMed ID: 26952395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Sn addition on the microstructure and superelasticity in Ti-Nb-Mo-Sn alloys.
    Zhang DC; Yang S; Wei M; Mao YF; Tan CG; Lin JG
    J Mech Behav Biomed Mater; 2012 Sep; 13():156-65. PubMed ID: 22842657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrafine-grained porous titanium and porous titanium/magnesium composites fabricated by space holder-enabled severe plastic deformation.
    Qi Y; Contreras KG; Jung HD; Kim HE; Lapovok R; Estrin Y
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():754-765. PubMed ID: 26652430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of bimodal harmonic structure design on the deformation behaviour and mechanical properties of Co-Cr-Mo alloy.
    Vajpai SK; Sawangrat C; Yamaguchi O; Ciuca OP; Ameyama K
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():1008-15. PubMed ID: 26478398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.