These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 28059184)

  • 1. Fiber ring resonator with a nanofiber section for chiral cavity quantum electrodynamics and multimode strong coupling.
    Schneeweiss P; Zeiger S; Hoinkes T; Rauschenbeutel A; Volz J
    Opt Lett; 2017 Jan; 42(1):85-88. PubMed ID: 28059184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanofiber Fabry-Perot microresonator for nonlinear optics and cavity quantum electrodynamics.
    Wuttke C; Becker M; Brückner S; Rothhardt M; Rauschenbeutel A
    Opt Lett; 2012 Jun; 37(11):1949-51. PubMed ID: 22660083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanofiber-segment ring resonator.
    Jones DE; Hickman GT; Franson JD; Pittman TB
    Opt Lett; 2016 Aug; 41(16):3683-5. PubMed ID: 27519062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber.
    Vetsch E; Reitz D; Sagué G; Schmidt R; Dawkins ST; Rauschenbeutel A
    Phys Rev Lett; 2010 May; 104(20):203603. PubMed ID: 20867028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light-Matter Interaction at the Transition between Cavity and Waveguide QED.
    Lechner D; Pennetta R; Blaha M; Schneeweiss P; Rauschenbeutel A; Volz J
    Phys Rev Lett; 2023 Sep; 131(10):103603. PubMed ID: 37739377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cavity QED with a Bose-Einstein condensate.
    Brennecke F; Donner T; Ritter S; Bourdel T; Köhl M; Esslinger T
    Nature; 2007 Nov; 450(7167):268-71. PubMed ID: 17994093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observation of Collective Superstrong Coupling of Cold Atoms to a 30-m Long Optical Resonator.
    Johnson A; Blaha M; Ulanov AE; Rauschenbeutel A; Schneeweiss P; Volz J
    Phys Rev Lett; 2019 Dec; 123(24):243602. PubMed ID: 31922835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tailoring a nanofiber for enhanced photon emission and coupling efficiency from single quantum emitters.
    Li W; Du J; Nic Chormaic S
    Opt Lett; 2018 Apr; 43(8):1674-1677. PubMed ID: 29652337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cavity Quantum Acoustic Device in the Multimode Strong Coupling Regime.
    Moores BA; Sletten LR; Viennot JJ; Lehnert KW
    Phys Rev Lett; 2018 Jun; 120(22):227701. PubMed ID: 29906138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-Time Observation of Single Atoms Trapped and Interfaced to a Nanofiber Cavity.
    Nayak KP; Wang J; Keloth J
    Phys Rev Lett; 2019 Nov; 123(21):213602. PubMed ID: 31809149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observation of strong coupling between one atom and a monolithic microresonator.
    Aoki T; Dayan B; Wilcut E; Bowen WP; Parkins AS; Kippenberg TJ; Vahala KJ; Kimble HJ
    Nature; 2006 Oct; 443(7112):671-4. PubMed ID: 17035998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strong and Coherent Coupling of a Plasmonic Nanoparticle to a Subwavelength Fabry-Pérot Resonator.
    Konrad A; Kern AM; Brecht M; Meixner AJ
    Nano Lett; 2015 Jul; 15(7):4423-8. PubMed ID: 26061892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics.
    Wallraff A; Schuster DI; Blais A; Frunzio L; Huang R; Majer J; Kumar S; Girvin SM; Schoelkopf RJ
    Nature; 2004 Sep; 431(7005):162-7. PubMed ID: 15356625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A general model for taper coupling of multiple modes of whispering gallery resonators and application to analysis of coupling-induced Fano interference in a single cavity.
    Gorajoobi SB; Murugan GS; Zervas MN
    Opt Express; 2019 Sep; 27(18):25493-25501. PubMed ID: 31510421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of a centimeter-long cavity on a nanofiber for cavity quantum electrodynamics.
    Keloth J; Nayak KP; Hakuta K
    Opt Lett; 2017 Mar; 42(5):1003-1006. PubMed ID: 28248346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A photon-photon quantum gate based on a single atom in an optical resonator.
    Hacker B; Welte S; Rempe G; Ritter S
    Nature; 2016 Aug; 536(7615):193-6. PubMed ID: 27383791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanofiber-based high-Q microresonator for cryogenic applications.
    Hütner J; Hoinkes T; Becker M; Rothhardt M; Rauschenbeutel A; Skoff SM
    Opt Express; 2020 Feb; 28(3):3249-3257. PubMed ID: 32121997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cavity quantum electrodynamics on a nanofiber using a composite photonic crystal cavity.
    Yalla R; Sadgrove M; Nayak KP; Hakuta K
    Phys Rev Lett; 2014 Oct; 113(14):143601. PubMed ID: 25325641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency tuning of the whispering-gallery modes of silica microspheres for cavity quantum electrodynamics and spectroscopy.
    von Klitzing W; Long R; Ilchenko VS; Hare J; Lefèvre-Seguin V
    Opt Lett; 2001 Feb; 26(3):166-8. PubMed ID: 18033538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip.
    Colombe Y; Steinmetz T; Dubois G; Linke F; Hunger D; Reichel J
    Nature; 2007 Nov; 450(7167):272-6. PubMed ID: 17994094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.