BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 28059233)

  • 41. Computer vision for high content screening.
    Kraus OZ; Frey BJ
    Crit Rev Biochem Mol Biol; 2016; 51(2):102-9. PubMed ID: 26806341
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A mixed-scale dense convolutional neural network for image analysis.
    Pelt DM; Sethian JA
    Proc Natl Acad Sci U S A; 2018 Jan; 115(2):254-259. PubMed ID: 29279403
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Classification of Medical Images in the Biomedical Literature by Jointly Using Deep and Handcrafted Visual Features.
    Zhang J; Xia Y; Xie Y; Fulham M; Feng DD
    IEEE J Biomed Health Inform; 2018 Sep; 22(5):1521-1530. PubMed ID: 29990115
    [TBL] [Abstract][Full Text] [Related]  

  • 44. OCT-based deep learning algorithm for the evaluation of treatment indication with anti-vascular endothelial growth factor medications.
    Prahs P; Radeck V; Mayer C; Cvetkov Y; Cvetkova N; Helbig H; Märker D
    Graefes Arch Clin Exp Ophthalmol; 2018 Jan; 256(1):91-98. PubMed ID: 29127485
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Holographic deep learning for rapid optical screening of anthrax spores.
    Jo Y; Park S; Jung J; Yoon J; Joo H; Kim MH; Kang SJ; Choi MC; Lee SY; Park Y
    Sci Adv; 2017 Aug; 3(8):e1700606. PubMed ID: 28798957
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Improving classification of pollen grain images of the POLEN23E dataset through three different applications of deep learning convolutional neural networks.
    Sevillano V; Aznarte JL
    PLoS One; 2018; 13(9):e0201807. PubMed ID: 30216353
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Convolutional networks can learn to generate affinity graphs for image segmentation.
    Turaga SC; Murray JF; Jain V; Roth F; Helmstaedter M; Briggman K; Denk W; Seung HS
    Neural Comput; 2010 Feb; 22(2):511-38. PubMed ID: 19922289
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Deep Learning in Medical Imaging: General Overview.
    Lee JG; Jun S; Cho YW; Lee H; Kim GB; Seo JB; Kim N
    Korean J Radiol; 2017; 18(4):570-584. PubMed ID: 28670152
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Novel Multispace Image Reconstruction Method for Pathological Image Classification Based on Structural Information.
    Zhu H; Jiang H; Li S; Li H; Pei Y
    Biomed Res Int; 2019; 2019():3530903. PubMed ID: 31111048
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Visualizing deep neural network by alternately image blurring and deblurring.
    Wang F; Liu H; Cheng J
    Neural Netw; 2018 Jan; 97():162-172. PubMed ID: 29126069
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning?
    Tajbakhsh N; Shin JY; Gurudu SR; Hurst RT; Kendall CB; Gotway MB; Jianming Liang
    IEEE Trans Med Imaging; 2016 May; 35(5):1299-1312. PubMed ID: 26978662
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Deep learning with convolutional neural network for objective skill evaluation in robot-assisted surgery.
    Wang Z; Majewicz Fey A
    Int J Comput Assist Radiol Surg; 2018 Dec; 13(12):1959-1970. PubMed ID: 30255463
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Generic feature learning for wireless capsule endoscopy analysis.
    Seguí S; Drozdzal M; Pascual G; Radeva P; Malagelada C; Azpiroz F; Vitrià J
    Comput Biol Med; 2016 Dec; 79():163-172. PubMed ID: 27810622
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Deep 3D Convolutional Encoder Networks With Shortcuts for Multiscale Feature Integration Applied to Multiple Sclerosis Lesion Segmentation.
    Brosch T; Tang LY; Youngjin Yoo ; Li DK; Traboulsee A; Tam R
    IEEE Trans Med Imaging; 2016 May; 35(5):1229-1239. PubMed ID: 26886978
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structural inference embedded adversarial networks for scene parsing.
    Wang Z; Wu Y; Bu S; Han P; Zhang G
    PLoS One; 2018; 13(4):e0195114. PubMed ID: 29649294
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparison and optimization of machine learning methods for automated classification of circulating tumor cells.
    Lannin TB; Thege FI; Kirby BJ
    Cytometry A; 2016 Oct; 89(10):922-931. PubMed ID: 27754580
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pre-trained convolutional neural networks as feature extractors for tuberculosis detection.
    Lopes UK; Valiati JF
    Comput Biol Med; 2017 Oct; 89():135-143. PubMed ID: 28800442
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Deep Learning-Based Single-Cell Optical Image Studies.
    Sun J; Tárnok A; Su X
    Cytometry A; 2020 Mar; 97(3):226-240. PubMed ID: 31981309
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Event Recognition Based on Deep Learning in Chinese Texts.
    Zhang Y; Liu Z; Zhou W;
    PLoS One; 2016; 11(8):e0160147. PubMed ID: 27501231
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Learning-based 3T brain MRI segmentation with guidance from 7T MRI labeling.
    Deng M; Yu R; Wang L; Shi F; Yap PT; Shen D;
    Med Phys; 2016 Dec; 43(12):6588-6597. PubMed ID: 28054724
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.