These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 28059281)

  • 21. Superconducting nanowire single-photon detectors integrated with optical nano-antennae.
    Hu X; Dauler EA; Molnar RJ; Berggren KK
    Opt Express; 2011 Jan; 19(1):17-31. PubMed ID: 21263538
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced absorption in silicon nanocone arrays for photovoltaics.
    Wang B; Leu PW
    Nanotechnology; 2012 May; 23(19):194003. PubMed ID: 22538835
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hybrid heterojunction solar cell based on organic-inorganic silicon nanowire array architecture.
    Shen X; Sun B; Liu D; Lee ST
    J Am Chem Soc; 2011 Dec; 133(48):19408-15. PubMed ID: 22035274
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Light trapping in randomly arranged silicon nanorocket arrays for photovoltaic applications.
    Zhang FQ; Peng KQ; Sun RN; Hu Y; Lee ST
    Nanotechnology; 2015 Sep; 26(37):375401. PubMed ID: 26303032
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mesoscale trumps nanoscale: metallic mesoscale contact morphology for improved light trapping, optical absorption and grid conductance in silicon solar cells.
    Saive R; Atwater HA
    Opt Express; 2018 Mar; 26(6):A275-A282. PubMed ID: 29609358
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells.
    Mallick SB; Agrawal M; Peumans P
    Opt Express; 2010 Mar; 18(6):5691-706. PubMed ID: 20389585
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Light-trapping design of graphene transparent electrodes for efficient thin-film silicon solar cells.
    Zhao Y; Chen F; Shen Q; Zhang L
    Appl Opt; 2012 Sep; 51(25):6245-51. PubMed ID: 22945173
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhancing extraordinary transmission of light through a metallic nanoslit with a nanocavity antenna.
    Cui Y; He S
    Opt Lett; 2009 Jan; 34(1):16-8. PubMed ID: 19109625
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Horizontal Silicon Nanowires with Radial p-n Junctions: A Platform for Unconventional Solar Cells.
    Zhang X; Pinion CW; Christesen JD; Flynn CJ; Celano TA; Cahoon JF
    J Phys Chem Lett; 2013 Jun; 4(12):2002-9. PubMed ID: 26283243
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Silicon Nanowires for Solar Thermal Energy Harvesting: an Experimental Evaluation on the Trade-off Effects of the Spectral Optical Properties.
    Sekone AK; Chen YB; Lu MC; Chen WK; Liu CA; Lee MT
    Nanoscale Res Lett; 2016 Dec; 11(1):1. PubMed ID: 26729219
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Significant light absorption enhancement in silicon thin film tandem solar cells with metallic nanoparticles.
    Cai B; Li X; Zhang Y; Jia B
    Nanotechnology; 2016 May; 27(19):195401. PubMed ID: 27040376
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ultra-broadband performance enhancement of thin-film amorphous silicon solar cells with conformal zig-zag configuration.
    Yang Z; Shang A; Zhan Y; Zhang C; Li X
    Opt Lett; 2013 Dec; 38(23):5071-4. PubMed ID: 24281512
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metallic-nanowire-loaded silicon-on-insulator structures: a route to low-loss plasmon waveguiding on the nanoscale.
    Bian Y; Gong Q
    Nanoscale; 2015 Mar; 7(10):4415-22. PubMed ID: 25648863
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Solar energy harnessing in hexagonally arranged Si nanowire arrays and effects of array symmetry on optical characteristics.
    Li J; Yu H; Li Y
    Nanotechnology; 2012 May; 23(19):194010. PubMed ID: 22539152
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plasmon-enhanced performance of an ultrathin silicon solar cell using metal-semiconductor core-shell hemispherical nanoparticles and metallic back grating.
    Heidarzadeh H; Rostami A; Dolatyari M; Rostami G
    Appl Opt; 2016 Mar; 55(7):1779-85. PubMed ID: 26974643
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Antenna-load interactions at optical frequencies: impedance matching to quantum systems.
    Olmon RL; Raschke MB
    Nanotechnology; 2012 Nov; 23(44):444001. PubMed ID: 23079849
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Si nanowire phototransistors at telecommunication wavelengths by plasmon-enhanced two-photon absorption.
    Siampour H; Dan Y
    Opt Express; 2016 Mar; 24(5):4601-4609. PubMed ID: 29092288
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High efficiency silicon solar cell based on asymmetric nanowire.
    Ko MD; Rim T; Kim K; Meyyappan M; Baek CK
    Sci Rep; 2015 Jul; 5():11646. PubMed ID: 26152914
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array.
    Chou SY; Ding W
    Opt Express; 2013 Jan; 21 Suppl 1():A60-76. PubMed ID: 23389276
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Theoretical consideration of III-V nanowire/Si triple-junction solar cells.
    Wen L; Li X; Zhao Z; Bu S; Zeng X; Huang JH; Wang Y
    Nanotechnology; 2012 Dec; 23(50):505202. PubMed ID: 23182996
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.