These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 28059405)
21. In Vitro Digestibility and Quality of an Emulsified Meat Product Formulated With Animal Fat Encapsulated With Pectin. Santiaguín-Padilla AJ; Peña-Ramos EA; Pérez-Gallardo A; Rascón-Chu A; González-Ávila M; González-Ríos H; González-Noriega JA; Islava-Lagarda T J Food Sci; 2019 Jun; 84(6):1331-1339. PubMed ID: 31132153 [TBL] [Abstract][Full Text] [Related]
22. Core-shell biopolymer nanoparticles produced by electrostatic deposition of beet pectin onto heat-denatured beta-lactoglobulin aggregates. Santipanichwong R; Suphantharika M; Weiss J; McClements DJ J Food Sci; 2008 Aug; 73(6):N23-30. PubMed ID: 19241582 [TBL] [Abstract][Full Text] [Related]
23. The effect of vegetable oil pre-emulsified with whey protein and pectin on physicochemical properties and microstructure of low-fat yogurt. Li H; Zhang Y; Liu X; Li M; Zhang L; Yang J; Li D; Li H; Wang X; Yu J J Food Sci; 2023 Jun; 88(6):2273-2285. PubMed ID: 37092311 [TBL] [Abstract][Full Text] [Related]
24. Volatile release from whey protein isolate-pectin multilayer stabilized emulsions: effect of pH, salt, and artificial salivas. Mao L; Roos YH; O'Callaghan DJ; Miao S J Agric Food Chem; 2013 Jul; 61(26):6231-9. PubMed ID: 23718126 [TBL] [Abstract][Full Text] [Related]
25. Physiochemical, texture properties, and the microstructure of set yogurt using whey protein-sodium tripolyphosphate aggregates as thickening agents. Cheng J; Xie S; Yin Y; Feng X; Wang S; Guo M; Ni C J Sci Food Agric; 2017 Jul; 97(9):2819-2825. PubMed ID: 27778346 [TBL] [Abstract][Full Text] [Related]
26. Thermodynamic incompatibility and complex formation in pectin/caseinate mixtures. Rediguieri CF; de Freitas O; Lettinga MP; Tuinier R Biomacromolecules; 2007 Nov; 8(11):3345-54. PubMed ID: 17994786 [TBL] [Abstract][Full Text] [Related]
27. Effect of the biopolymer mixing ratio on the formation of electrostatically coupled whey protein-κ- and ι-carrageenan networks in the presence and absence of oil droplets. Lam RS; Nickerson MT J Agric Food Chem; 2014 Aug; 62(34):8730-9. PubMed ID: 25101482 [TBL] [Abstract][Full Text] [Related]
28. Preparation and impact of multiple (water-in-oil-in-water) emulsions in meat systems. Cofrades S; Antoniou I; Solas MT; Herrero AM; Jiménez-Colmenero F Food Chem; 2013 Nov; 141(1):338-46. PubMed ID: 23768366 [TBL] [Abstract][Full Text] [Related]
29. Physical properties and stability of filled hydrogel particles based on biopolymer phase separation: Influence of the ratio of protein to polysaccharide. Cao C; Zhao S; Chen J; Wang H; Liu Q; Kong B Int J Biol Macromol; 2020 Jan; 142():803-810. PubMed ID: 31622699 [TBL] [Abstract][Full Text] [Related]
30. Tuneable stability of nanoemulsions fabricated using spontaneous emulsification by biopolymer electrostatic deposition. Saberi AH; Zeeb B; Weiss J; McClements DJ J Colloid Interface Sci; 2015 Oct; 455():172-8. PubMed ID: 26070187 [TBL] [Abstract][Full Text] [Related]
31. Interactions of high methoxyl pectin with whey proteins at oil/water interfaces at acid pH. Gancz K; Alexander M; Corredig M J Agric Food Chem; 2005 Mar; 53(6):2236-41. PubMed ID: 15769162 [TBL] [Abstract][Full Text] [Related]
32. Complexation of high methoxyl pectin with ethanol desolvated whey protein nanoparticles: physico-chemical properties and encapsulation behaviour. Gülseren I; Fang Y; Corredig M Food Funct; 2012 Aug; 3(8):859-66. PubMed ID: 22669210 [TBL] [Abstract][Full Text] [Related]
33. Fabrication and morphological characterization of biopolymer particles formed by electrostatic complexation of heat treated lactoferrin and anionic polysaccharides. Peinado I; Lesmes U; Andrés A; McClements JD Langmuir; 2010 Jun; 26(12):9827-34. PubMed ID: 20229991 [TBL] [Abstract][Full Text] [Related]
34. Surface adsorption behaviour of milk whey protein and pectin mixtures under conditions of air-water interface saturation. Perez AA; Sánchez CC; Patino JM; Rubiolo AC; Santiago LG Colloids Surf B Biointerfaces; 2011 Jul; 85(2):306-15. PubMed ID: 21440425 [TBL] [Abstract][Full Text] [Related]
35. Influence of pH, metal chelator, free radical scavenger and interfacial characteristics on the oxidative stability of β-carotene in conjugated whey protein-pectin stabilised emulsion. Xu D; Yuan F; Gao Y; McClements DJ; Decker EA Food Chem; 2013 Aug; 139(1-4):1098-104. PubMed ID: 23561214 [TBL] [Abstract][Full Text] [Related]
36. Lycopene-loaded emulsions stabilized by whey protein covalently modified with pectin or/and chlorogenic acid: Enhanced physicochemical stability and reduced bio-accessibility. Zhang Y; Zhang T; Dong C; Zhao R; Zhang X; Wang C Food Chem; 2023 Aug; 417():135879. PubMed ID: 36933434 [TBL] [Abstract][Full Text] [Related]
37. Active biopolymer films based on furcellaran, whey protein isolate and Borago officinalis extract: characterization and application in smoked pork ham production. Zając M; Jamróz E; Guzik P; Kulawik P; Tkaczewska J J Sci Food Agric; 2021 May; 101(7):2884-2891. PubMed ID: 33159331 [TBL] [Abstract][Full Text] [Related]
38. Biopolymer nanoparticles from heat-treated electrostatic protein-polysaccharide complexes: factors affecting particle characteristics. Jones OG; McClements DJ J Food Sci; 2010 Mar; 75(2):N36-43. PubMed ID: 20492252 [TBL] [Abstract][Full Text] [Related]
39. Comparison of protein-polysaccharide nanoparticle fabrication methods: impact of biopolymer complexation before or after particle formation. Jones OG; Decker EA; McClements DJ J Colloid Interface Sci; 2010 Apr; 344(1):21-9. PubMed ID: 20045114 [TBL] [Abstract][Full Text] [Related]
40. Optimizing delivery systems for cationic biopolymers: competitive interactions of cationic polylysine with anionic κ-carrageenan and pectin. Lopez-Pena CL; McClements DJ Food Chem; 2014 Jun; 153():9-14. PubMed ID: 24491693 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]