These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 28059428)
1. Photochemical behavior of biosupramolecular assemblies of photosensitizers, cucurbit[n]urils and albumins. Cáceres J; Robinson-Duggon J; Tapia A; Paiva C; Gómez M; Bohne C; Fuentealba D Phys Chem Chem Phys; 2017 Jan; 19(3):2574-2582. PubMed ID: 28059428 [TBL] [Abstract][Full Text] [Related]
2. Methylene blue encapsulation in cucurbit[7]uril: laser flash photolysis and near-IR luminescence studies of the interaction with oxygen. González-Béjar M; Montes-Navajas P; García H; Scaiano JC Langmuir; 2009 Sep; 25(18):10490-4. PubMed ID: 19735127 [TBL] [Abstract][Full Text] [Related]
3. Biosupramolecular complexes of amphiphilic photosensitizers with human serum albumin and cucurbit[7]uril as carriers for photodynamic therapy. Robinson-Duggon J; McTiernan CD; Muñoz M; Guerra D; Escobar Álvarez E; Andrade-Villalobos F; Fierro A; Edwards AM; Alarcon EI; Fuentealba D J Photochem Photobiol B; 2021 Oct; 223():112284. PubMed ID: 34450362 [TBL] [Abstract][Full Text] [Related]
4. Supramolecular co-encapsulation of a photosensitizer and chemotherapeutic drug in cucurbit[8]uril for potential chemophototherapy. Solis-Egaña F; Lavín-Urqueta N; Guerra Díaz D; Mariño-Ocampo N; Faúndez MA; Fuentealba D Photochem Photobiol Sci; 2022 Mar; 21(3):349-359. PubMed ID: 35088367 [TBL] [Abstract][Full Text] [Related]
5. Singlet oxygen in antimicrobial photodynamic therapy: photosensitizer-dependent production and decay in E. coli. Ragàs X; He X; Agut M; Roxo-Rosa M; Gonsalves AR; Serra AC; Nonell S Molecules; 2013 Feb; 18(3):2712-25. PubMed ID: 23449068 [TBL] [Abstract][Full Text] [Related]
6. Physicochemical properties of potential porphyrin photosensitizers for photodynamic therapy. Kempa M; Kozub P; Kimball J; Rojkiewicz M; Kuś P; Gryczyński Z; Ratuszna A Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jul; 146():249-54. PubMed ID: 25819312 [TBL] [Abstract][Full Text] [Related]
7. Enhanced Fluorescence Emission and Singlet Oxygen Generation of Photosensitizers Embedded in Injectable Hydrogels for Imaging-Guided Photodynamic Cancer Therapy. Xia LY; Zhang X; Cao M; Chen Z; Wu FG Biomacromolecules; 2017 Oct; 18(10):3073-3081. PubMed ID: 28820580 [TBL] [Abstract][Full Text] [Related]
9. Current status of liposomal porphyrinoid photosensitizers. Skupin-Mrugalska P; Piskorz J; Goslinski T; Mielcarek J; Konopka K; Düzgüneş N Drug Discov Today; 2013 Aug; 18(15-16):776-84. PubMed ID: 23591149 [TBL] [Abstract][Full Text] [Related]
10. Host-guest complexes - Boosting the performance of photosensitizers. Sowa A; Voskuhl J Int J Pharm; 2020 Aug; 586():119595. PubMed ID: 32629069 [TBL] [Abstract][Full Text] [Related]
11. A study of the Fenton-mediated oxidation of methylene blue-cucurbit[n]uril complexes. Fuenzalida T; Fuentealba D Photochem Photobiol Sci; 2015 Apr; 14(4):686-92. PubMed ID: 25573771 [TBL] [Abstract][Full Text] [Related]
12. Photosensitizing properties of mono-L-aspartyl chlorin e6 (NPe6): a candidate sensitizer for the photodynamic therapy of tumors. Spikes JD; Bommer JC J Photochem Photobiol B; 1993 Feb; 17(2):135-43. PubMed ID: 8459317 [TBL] [Abstract][Full Text] [Related]
13. Liposomes encapsulating methylene blue and acridine orange: An approach for phototherapy of skin cancer. Pivetta TP; Ferreira Q; Vieira T; Silva JC; Simões S; Ribeiro PA; Raposo M Colloids Surf B Biointerfaces; 2022 Dec; 220():112901. PubMed ID: 36215895 [TBL] [Abstract][Full Text] [Related]
14. Synthesis, Photophysical Properties and Application of New Porphyrin Derivatives for Use in Photodynamic Therapy and Cell Imaging. Mahajan PG; Dige NC; Vanjare BD; Phull AR; Kim SJ; Hong SK; Lee KH J Fluoresc; 2018 Jul; 28(4):871-882. PubMed ID: 30014275 [TBL] [Abstract][Full Text] [Related]
15. In vitro investigation of methylene blue-bearing, electrostatically assembled aptamer-silica nanocomposites as potential photodynamic therapeutics. Ding TS; Huang XC; Luo YL; Hsu HY Colloids Surf B Biointerfaces; 2015 Nov; 135():217-224. PubMed ID: 26255165 [TBL] [Abstract][Full Text] [Related]
16. Nano-formulation of a photosensitizer using a DNA tetrahedron and its potential for in vivo photodynamic therapy. Kim KR; Bang D; Ahn DR Biomater Sci; 2016 Apr; 4(4):605-9. PubMed ID: 26674121 [TBL] [Abstract][Full Text] [Related]
17. Mechanistics and photo-energetics of macrocycles and photodynamic therapy: An overview of aspects to consider for research. Horne TK; Cronjé MJ Chem Biol Drug Des; 2017 Feb; 89(2):221-242. PubMed ID: 28205405 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of delocalized lipophilic cationic dyes as delivery vehicles for photosensitizers to mitochondria. Ngen EJ; Rajaputra P; You Y Bioorg Med Chem; 2009 Sep; 17(18):6631-40. PubMed ID: 19692249 [TBL] [Abstract][Full Text] [Related]
19. Real-time imaging of photodynamic action in bacteria. Gollmer A; Felgentraeger A; Maisch T; Flors C J Biophotonics; 2017 Feb; 10(2):264-270. PubMed ID: 26790971 [TBL] [Abstract][Full Text] [Related]
20. The antimicrobial activity of photodynamic therapy against Streptococcus mutans using different photosensitizers. Rolim JP; de-Melo MA; Guedes SF; Albuquerque-Filho FB; de Souza JR; Nogueira NA; Zanin IC; Rodrigues LK J Photochem Photobiol B; 2012 Jan; 106():40-6. PubMed ID: 22070899 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]