BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

440 related articles for article (PubMed ID: 28059709)

  • 1. Microstructure of the Default Mode Network in Preterm Infants.
    Cui J; Tymofiyeva O; Desikan R; Flynn T; Kim H; Gano D; Hess CP; Ferriero DM; Barkovich AJ; Xu D
    AJNR Am J Neuroradiol; 2017 Feb; 38(2):343-348. PubMed ID: 28059709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gestational Age at Birth and Brain White Matter Development in Term-Born Infants and Children.
    Ou X; Glasier CM; Ramakrishnaiah RH; Kanfi A; Rowell AC; Pivik RT; Andres A; Cleves MA; Badger TM
    AJNR Am J Neuroradiol; 2017 Dec; 38(12):2373-2379. PubMed ID: 29025726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The cingulum in very preterm infants relates to language and social-emotional impairment at 2 years of term-equivalent age.
    Lee HJ; Kwon H; Kim JI; Lee JY; Lee JY; Bang S; Lee JM
    Neuroimage Clin; 2021; 29():102528. PubMed ID: 33338967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Moderate and late preterm infants exhibit widespread brain white matter microstructure alterations at term-equivalent age relative to term-born controls.
    Kelly CE; Cheong JL; Gabra Fam L; Leemans A; Seal ML; Doyle LW; Anderson PJ; Spittle AJ; Thompson DK
    Brain Imaging Behav; 2016 Mar; 10(1):41-9. PubMed ID: 25739350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probabilistic maps of the white matter tracts with known associated functions on the neonatal brain atlas: Application to evaluate longitudinal developmental trajectories in term-born and preterm-born infants.
    Akazawa K; Chang L; Yamakawa R; Hayama S; Buchthal S; Alicata D; Andres T; Castillo D; Oishi K; Skranes J; Ernst T; Oishi K
    Neuroimage; 2016 Mar; 128():167-179. PubMed ID: 26712341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerebral White Matter Maturation Patterns in Preterm Infants: An MRI T2 Relaxation Anisotropy and Diffusion Tensor Imaging Study.
    Knight MJ; Smith-Collins A; Newell S; Denbow M; Kauppinen RA
    J Neuroimaging; 2018 Jan; 28(1):86-94. PubMed ID: 29205635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. White matter microstructural differences identified using multi-shell diffusion imaging in six-year-old children born very preterm.
    Young JM; Vandewouw MM; Mossad SI; Morgan BR; Lee W; Smith ML; Sled JG; Taylor MJ
    Neuroimage Clin; 2019; 23():101855. PubMed ID: 31103872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Longitudinal change in white matter in preterm infants without magnetic resonance imaging abnormalities: Assessment of serial diffusion tensor imaging and their relationship to neurodevelopmental outcomes.
    Kidowaki S; Morimoto M; Yamada K; Sakai K; Zuiki M; Maeda H; Yamashita S; Morita T; Hasegawa T; Chiyonobu T; Tokuda S; Hosoi H
    Brain Dev; 2017 Jan; 39(1):40-47. PubMed ID: 27543266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of mild germinal matrix-intraventricular haemorrhage on the developmental white matter microstructure of preterm neonates: a DTI study.
    Tortora D; Martinetti C; Severino M; Uccella S; Malova M; Parodi A; Brera F; Morana G; Ramenghi LA; Rossi A
    Eur Radiol; 2018 Mar; 28(3):1157-1166. PubMed ID: 28956133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. White matter alterations and their associations with motor function in young adults born preterm with very low birth weight.
    Hollund IMH; Olsen A; Skranes J; Brubakk AM; Håberg AK; Eikenes L; Evensen KAI
    Neuroimage Clin; 2018; 17():241-250. PubMed ID: 29159041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The motor and visual networks in preterm infants: An fMRI and DTI study.
    Weinstein M; Ben-Sira L; Moran A; Berger I; Marom R; Geva R; Gross-Tsur V; Leitner Y; Ben Bashat D
    Brain Res; 2016 Jul; 1642():603-611. PubMed ID: 27117868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cerebral white matter and neurodevelopment of preterm infants after coagulase-negative staphylococcal sepsis.
    Hemels MA; Nijman J; Leemans A; van Kooij BJ; van den Hoogen A; Benders MJ; Koopman-Esseboom C; van Haastert IC; de Vries LS; Krediet TG; Groenendaal F
    Pediatr Crit Care Med; 2012 Nov; 13(6):678-84. PubMed ID: 22805155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffusion tensor imaging study of pediatric patients with congenital hydrocephalus: 1-year postsurgical outcomes.
    Mangano FT; Altaye M; McKinstry RC; Shimony JS; Powell SK; Phillips JM; Barnard H; Limbrick DD; Holland SK; Jones BV; Dodd J; Simpson S; Mercer D; Rajagopal A; Bidwell S; Yuan W
    J Neurosurg Pediatr; 2016 Sep; 18(3):306-19. PubMed ID: 27203134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. White matter injury predicts disrupted functional connectivity and microstructure in very preterm born neonates.
    Duerden EG; Halani S; Ng K; Guo T; Foong J; Glass TJA; Chau V; Branson HM; Sled JG; Whyte HE; Kelly EN; Miller SP
    Neuroimage Clin; 2019; 21():101596. PubMed ID: 30458986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain microstructure and morphology of very preterm-born infants at term equivalent age: Associations with motor and cognitive outcomes at 1 and 2 years.
    Pannek K; George JM; Boyd RN; Colditz PB; Rose SE; Fripp J
    Neuroimage; 2020 Nov; 221():117163. PubMed ID: 32663645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of brain maturation in the preterm infants using diffusion tensor imaging (DTI) and enhanced T2 star weighted angiography (ESWAN).
    Ling X; Tang W; Liu G; Huang L; Li B; Li X; Liu S; Xu J
    Eur J Radiol; 2013 Sep; 82(9):e476-83. PubMed ID: 23639775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neonatal Brain Microstructure and Machine-Learning-Based Prediction of Early Language Development in Children Born Very Preterm.
    Vassar R; Schadl K; Cahill-Rowley K; Yeom K; Stevenson D; Rose J
    Pediatr Neurol; 2020 Jul; 108():86-92. PubMed ID: 32279900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A latent measure explains substantial variance in white matter microstructure across the newborn human brain.
    Telford EJ; Cox SR; Fletcher-Watson S; Anblagan D; Sparrow S; Pataky R; Quigley A; Semple SI; Bastin ME; Boardman JP
    Brain Struct Funct; 2017 Dec; 222(9):4023-4033. PubMed ID: 28589258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Delayed Maturation of the Middle Cerebellar Peduncles at Near-Term Age Predicts Abnormal Neurodevelopment in Preterm Infants.
    Choi YH; Lee JM; Lee JY; Lee JY; Lee YJ; Ahn JH; Lee HJ
    Neonatology; 2021; 118(1):37-46. PubMed ID: 33503618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Harmonizing DTI measurements across scanners to examine the development of white matter microstructure in 803 adolescents of the NCANDA study.
    Pohl KM; Sullivan EV; Rohlfing T; Chu W; Kwon D; Nichols BN; Zhang Y; Brown SA; Tapert SF; Cummins K; Thompson WK; Brumback T; Colrain IM; Baker FC; Prouty D; De Bellis MD; Voyvodic JT; Clark DB; Schirda C; Nagel BJ; Pfefferbaum A
    Neuroimage; 2016 Apr; 130():194-213. PubMed ID: 26872408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.