These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

445 related articles for article (PubMed ID: 28059709)

  • 41. Tract-Based Spatial Statistics in Preterm-Born Neonates Predicts Cognitive and Motor Outcomes at 18 Months.
    Duerden EG; Foong J; Chau V; Branson H; Poskitt KJ; Grunau RE; Synnes A; Zwicker JG; Miller SP
    AJNR Am J Neuroradiol; 2015 Aug; 36(8):1565-71. PubMed ID: 25929880
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Hemispheric Regional Based Analysis of Diffusion Tensor Imaging and Diffusion Tensor Tractography in Patients with Temporal Lobe Epilepsy and Correlation with Patient outcomes.
    Alizadeh M; Kozlowski L; Muller J; Ashraf N; Shahrampour S; Mohamed FB; Wu C; Sharan A
    Sci Rep; 2019 Jan; 9(1):215. PubMed ID: 30659215
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Tractography of white-matter tracts in very preterm infants: a 2-year follow-up study.
    De Bruïne FT; Van Wezel-Meijler G; Leijser LM; Steggerda SJ; Van Den Berg-Huysmans AA; Rijken M; Van Buchem MA; Van Der Grond J
    Dev Med Child Neurol; 2013 May; 55(5):427-33. PubMed ID: 23441853
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Recent advances in diffusion neuroimaging: applications in the developing preterm brain.
    Pecheva D; Kelly C; Kimpton J; Bonthrone A; Batalle D; Zhang H; Counsell SJ
    F1000Res; 2018; 7():. PubMed ID: 30210783
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Characterization of Extensive Microstructural Variations Associated with Punctate White Matter Lesions in Preterm Neonates.
    Li X; Gao J; Wang M; Zheng J; Li Y; Hui ES; Wan M; Yang J
    AJNR Am J Neuroradiol; 2017 Jun; 38(6):1228-1234. PubMed ID: 28450434
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparing a diffusion tensor and non-tensor approach to white matter fiber tractography in chronic stroke.
    Auriat AM; Borich MR; Snow NJ; Wadden KP; Boyd LA
    Neuroimage Clin; 2015; 7():771-81. PubMed ID: 25844329
    [TBL] [Abstract][Full Text] [Related]  

  • 47. White Matter Injury and General Movements in High-Risk Preterm Infants.
    Peyton C; Yang E; Msall ME; Adde L; Støen R; Fjørtoft T; Bos AF; Einspieler C; Zhou Y; Schreiber MD; Marks JD; Drobyshevsky A
    AJNR Am J Neuroradiol; 2017 Jan; 38(1):162-169. PubMed ID: 27789448
    [TBL] [Abstract][Full Text] [Related]  

  • 48. White matter microstructure underlying default mode network connectivity in the human brain.
    Teipel SJ; Bokde AL; Meindl T; Amaro E; Soldner J; Reiser MF; Herpertz SC; Möller HJ; Hampel H
    Neuroimage; 2010 Feb; 49(3):2021-32. PubMed ID: 19878723
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Multiple Postnatal Infections in Newborns Born Preterm Predict Delayed Maturation of Motor Pathways at Term-Equivalent Age with Poorer Motor Outcomes at 3 Years.
    Glass TJA; Chau V; Grunau RE; Synnes A; Guo T; Duerden EG; Foong J; Poskitt KJ; Miller SP
    J Pediatr; 2018 May; 196():91-97.e1. PubMed ID: 29398063
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Neonatal diffusion tensor brain imaging predicts later motor outcome in preterm neonates with white matter abnormalities.
    Kim DY; Park HK; Kim NS; Hwang SJ; Lee HJ
    Ital J Pediatr; 2016 Dec; 42(1):104. PubMed ID: 27906083
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Abnormal white matter signal on MR imaging is related to abnormal tissue microstructure.
    Cheong JL; Thompson DK; Wang HX; Hunt RW; Anderson PJ; Inder TE; Doyle LW
    AJNR Am J Neuroradiol; 2009 Mar; 30(3):623-8. PubMed ID: 19131414
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Probabilistic diffusion tractography of the optic radiations and visual function in preterm infants at term equivalent age.
    Bassi L; Ricci D; Volzone A; Allsop JM; Srinivasan L; Pai A; Ribes C; Ramenghi LA; Mercuri E; Mosca F; Edwards AD; Cowan FM; Rutherford MA; Counsell SJ
    Brain; 2008 Feb; 131(Pt 2):573-82. PubMed ID: 18222994
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tractography at 3T MRI of Corpus Callosum Tracts Crossing White Matter Hyperintensities.
    Reginold W; Itorralba J; Luedke AC; Fernandez-Ruiz J; Reginold J; Islam O; Garcia A
    AJNR Am J Neuroradiol; 2016 Sep; 37(9):1617-22. PubMed ID: 27127001
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Brain structure and neurological and behavioural functioning in infants born preterm.
    Kelly CE; Thompson DK; Cheong JL; Chen J; Olsen JE; Eeles AL; Walsh JM; Seal ML; Anderson PJ; Doyle LW; Spittle AJ
    Dev Med Child Neurol; 2019 Jul; 61(7):820-831. PubMed ID: 30536389
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Motor and cortico-striatal-thalamic connectivity alterations in intrauterine growth restriction.
    Eixarch E; Muñoz-Moreno E; Bargallo N; Batalle D; Gratacos E
    Am J Obstet Gynecol; 2016 Jun; 214(6):725.e1-9. PubMed ID: 26719213
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evolution of T1 Relaxation, ADC, and Fractional Anisotropy during Early Brain Maturation: A Serial Imaging Study on Preterm Infants.
    Schneider J; Kober T; Bickle Graz M; Meuli R; Hüppi PS; Hagmann P; Truttmann AC
    AJNR Am J Neuroradiol; 2016 Jan; 37(1):155-62. PubMed ID: 26494693
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Severe retinopathy of prematurity predicts delayed white matter maturation and poorer neurodevelopment.
    Glass TJA; Chau V; Gardiner J; Foong J; Vinall J; Zwicker JG; Grunau RE; Synnes A; Poskitt KJ; Miller SP
    Arch Dis Child Fetal Neonatal Ed; 2017 Nov; 102(6):F532-F537. PubMed ID: 28536205
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Abnormalities of effective connectivity and white matter microstructure in the triple network in patients with schizophrenia.
    Kang Y; Huang K; Lin Y; Xu H; Zhang W; Lv Y; Cai S; Huang L
    Psychiatry Res; 2020 Aug; 290():113019. PubMed ID: 32474067
    [TBL] [Abstract][Full Text] [Related]  

  • 59. White and grey matter development in utero assessed using motion-corrected diffusion tensor imaging and its comparison to ex utero measures.
    Lockwood Estrin G; Wu Z; Deprez M; Bertelsen Á; Rutherford MA; Counsell SJ; Hajnal JV
    MAGMA; 2019 Aug; 32(4):473-485. PubMed ID: 30864022
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Brain Default Mode Network Changes after Renal Transplantation: A Diffusion-Tensor Imaging and Resting-State Functional MR Imaging Study.
    Zhang LJ; Wen J; Liang X; Qi R; Schoepf UJ; Wichmann JL; Milliken CM; Chen HJ; Kong X; Lu GM
    Radiology; 2016 Feb; 278(2):485-95. PubMed ID: 26200603
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.