These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 28060278)
1. Nuclear Magnetic Resonance Spectroscopy for the Identification of Multiple Phosphorylations of Intrinsically Disordered Proteins. Danis C; Despres C; Bessa LM; Malki I; Merzougui H; Huvent I; Qi H; Lippens G; Cantrelle FX; Schneider R; Hanoulle X; Smet-Nocca C; Landrieu I J Vis Exp; 2016 Dec; (118):. PubMed ID: 28060278 [TBL] [Abstract][Full Text] [Related]
2. The Study of Posttranslational Modifications of Tau Protein by Nuclear Magnetic Resonance Spectroscopy: Phosphorylation of Tau Protein by ERK2 Recombinant Kinase and Rat Brain Extract, and Acetylation by Recombinant Creb-Binding Protein. Qi H; Despres C; Prabakaran S; Cantrelle FX; Chambraud B; Gunawardena J; Lippens G; Smet-Nocca C; Landrieu I Methods Mol Biol; 2017; 1523():179-213. PubMed ID: 27975251 [TBL] [Abstract][Full Text] [Related]
3. Magnetic resonance investigation of conformational responses of tau protein to specific phosphorylation. Lasorsa A; Merzougui H; Cantrelle FX; Sicoli G; Dupré E; Hanoulle X; Belle V; Smet-Nocca C; Landrieu I Biophys Chem; 2024 Feb; 305():107155. PubMed ID: 38100856 [TBL] [Abstract][Full Text] [Related]
4. NMR Meets Tau: Insights into Its Function and Pathology. Lippens G; Landrieu I; Smet C; Huvent I; Gandhi NS; Gigant B; Despres C; Qi H; Lopez J Biomolecules; 2016 Jun; 6(2):. PubMed ID: 27338491 [TBL] [Abstract][Full Text] [Related]
5. NMR spectroscopy of the neuronal tau protein: normal function and implication in Alzheimer's disease. Landrieu I; Leroy A; Smet-Nocca C; Huvent I; Amniai L; Hamdane M; Sibille N; Buée L; Wieruszeski JM; Lippens G Biochem Soc Trans; 2010 Aug; 38(4):1006-11. PubMed ID: 20658994 [TBL] [Abstract][Full Text] [Related]
6. NMR analysis of a Tau phosphorylation pattern. Landrieu I; Lacosse L; Leroy A; Wieruszeski JM; Trivelli X; Sillen A; Sibille N; Schwalbe H; Saxena K; Langer T; Lippens G J Am Chem Soc; 2006 Mar; 128(11):3575-83. PubMed ID: 16536530 [TBL] [Abstract][Full Text] [Related]
7. Nuclear Magnetic Resonance Spectroscopy Insights into Tau Structure in Solution: Impact of Post-translational Modifications. Danis C; Dupré E; Hanoulle X; Landrieu I; Lasorsa A; Neves JF; Schneider R; Smet-Nocca C Adv Exp Med Biol; 2019; 1184():35-45. PubMed ID: 32096026 [TBL] [Abstract][Full Text] [Related]
8. In-Cell NMR Study of Tau and MARK2 Phosphorylated Tau. Zhang S; Wang C; Lu J; Ma X; Liu Z; Li D; Liu Z; Liu C Int J Mol Sci; 2018 Dec; 20(1):. PubMed ID: 30587819 [TBL] [Abstract][Full Text] [Related]
9. Characterization of Neuronal Tau Protein as a Target of Extracellular Signal-regulated Kinase. Qi H; Prabakaran S; Cantrelle FX; Chambraud B; Gunawardena J; Lippens G; Landrieu I J Biol Chem; 2016 Apr; 291(14):7742-53. PubMed ID: 26858248 [TBL] [Abstract][Full Text] [Related]
10. Phosphorylation of Tau Protein by CDK2/cyclin A and GSK3β Recombinant Kinases: Analysis of Phosphorylation Patterns by Nuclear Magnetic Resonance Spectroscopy. El Hajjar L; Bridot C; Nguyen M; Cantrelle FX; Landrieu I; Smet-Nocca C Methods Mol Biol; 2024; 2754():271-306. PubMed ID: 38512672 [TBL] [Abstract][Full Text] [Related]
11. A functional role for intrinsic disorder in the tau-tubulin complex. Melo AM; Coraor J; Alpha-Cobb G; Elbaum-Garfinkle S; Nath A; Rhoades E Proc Natl Acad Sci U S A; 2016 Dec; 113(50):14336-14341. PubMed ID: 27911791 [TBL] [Abstract][Full Text] [Related]
12. Structural characterization by nuclear magnetic resonance of the impact of phosphorylation in the proline-rich region of the disordered Tau protein. Sibille N; Huvent I; Fauquant C; Verdegem D; Amniai L; Leroy A; Wieruszeski JM; Lippens G; Landrieu I Proteins; 2012 Feb; 80(2):454-62. PubMed ID: 22072628 [TBL] [Abstract][Full Text] [Related]
13. Effect of altered solution conditions on tau conformational dynamics: Plausible implication on order propensity and aggregation. Jebarupa B; Muralidharan M; Srinivasu BY; Mandal AK; Mitra G Biochim Biophys Acta Proteins Proteom; 2018; 1866(5-6):668-679. PubMed ID: 29630971 [TBL] [Abstract][Full Text] [Related]
14. Measuring Interactions Between Tau and Aggregation Inducers with Single-Molecule Förster Resonance Energy Transfer. Wickramasinghe SP; Rhoades E Methods Mol Biol; 2020; 2141():755-775. PubMed ID: 32696388 [TBL] [Abstract][Full Text] [Related]
15. Proline-directed random-coil chemical shift values as a tool for the NMR assignment of the tau phosphorylation sites. Lippens G; Wieruszeski JM; Leroy A; Smet C; Sillen A; Buée L; Landrieu I Chembiochem; 2004 Jan; 5(1):73-8. PubMed ID: 14695515 [TBL] [Abstract][Full Text] [Related]
16. Nuclear magnetic resonance spectroscopy characterization of interaction of Tau with DNA and its regulation by phosphorylation. Qi H; Cantrelle FX; Benhelli-Mokrani H; Smet-Nocca C; Buée L; Lippens G; Bonnefoy E; Galas MC; Landrieu I Biochemistry; 2015 Feb; 54(7):1525-33. PubMed ID: 25623359 [TBL] [Abstract][Full Text] [Related]
17. Exploring IDP-Ligand Interactions: tau K18 as A Test Case. Vagrys D; Davidson J; Chen I; Hubbard RE; Davis B Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32722166 [TBL] [Abstract][Full Text] [Related]
18. Resonance Raman spectroscopic measurements delineate the structural changes that occur during tau fibril formation. Ramachandran G; Milán-Garcés EA; Udgaonkar JB; Puranik M Biochemistry; 2014 Oct; 53(41):6550-65. PubMed ID: 25284680 [TBL] [Abstract][Full Text] [Related]
20. Synthesis and conformational properties of phosphopeptides related to the human tau protein. Du JT; Li YM; Ma QF; Qiang W; Zhao YF; Abe H; Kanazawa K; Qin XR; Aoyagi R; Ishizuka Y; Nemoto T; Nakanishi H Regul Pept; 2005 Aug; 130(1-2):48-56. PubMed ID: 15869817 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]