BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 28060285)

  • 1. Preparation and In Vitro Characterization of Dendrimer-based Contrast Agents for Magnetic Resonance Imaging.
    Gündüz S; Savić T; Toljić Đ; Angelovski G
    J Vis Exp; 2016 Dec; (118):. PubMed ID: 28060285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AAZTA-based bifunctional chelating agents for the synthesis of multimeric/dendrimeric MRI contrast agents.
    Gugliotta G; Botta M; Tei L
    Org Biomol Chem; 2010 Oct; 8(20):4569-74. PubMed ID: 20740241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly(amidoamine) dendrimer based MRI contrast agents exhibiting enhanced relaxivities derived via metal preligation techniques.
    Nwe K; Bryant LH; Brechbiel MW
    Bioconjug Chem; 2010 Jun; 21(6):1014-7. PubMed ID: 20462240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rotational dynamics account for pH-dependent relaxivities of PAMAM dendrimeric, Gd-based potential MRI contrast agents.
    Laus S; Sour A; Ruloff R; Tóth E; Merbach AE
    Chemistry; 2005 May; 11(10):3064-76. PubMed ID: 15776490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macromolecular MRI contrast agents with small dendrimers: pharmacokinetic differences between sizes and cores.
    Kobayashi H; Kawamoto S; Jo SK; Bryant HL; Brechbiel MW; Star RA
    Bioconjug Chem; 2003; 14(2):388-94. PubMed ID: 12643749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physicochemical and MRI characterization of Gd3+-loaded polyamidoamine and hyperbranched dendrimers.
    Jászberényi Z; Moriggi L; Schmidt P; Weidensteiner C; Kneuer R; Merbach AE; Helm L; Tóth E
    J Biol Inorg Chem; 2007 Mar; 12(3):406-20. PubMed ID: 17216229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dendrimeric β-cyclodextrin/Gd(III) chelate supramolecular host-guest adducts as high-relaxivity MRI probes.
    Martinelli J; Thangavel K; Tei L; Botta M
    Chemistry; 2014 Aug; 20(35):10944-52. PubMed ID: 24827137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dendrimer-based MRI contrast agents: the effects of PEGylation on relaxivity and pharmacokinetics.
    Kojima C; Turkbey B; Ogawa M; Bernardo M; Regino CA; Bryant LH; Choyke PL; Kono K; Kobayashi H
    Nanomedicine; 2011 Dec; 7(6):1001-8. PubMed ID: 21515406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PAMAM dendrimers conjugated with an uncharged gadolinium(III) chelate with a fast water exchange: the influence of chelate charge on rotational dynamics.
    Polásek M; Hermann P; Peters JA; Geraldes CF; Lukes I
    Bioconjug Chem; 2009 Nov; 20(11):2142-53. PubMed ID: 19883075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dendrimer-Based Responsive MRI Contrast Agents (G1-G4) for Biosensor Imaging of Redundant Deviation in Shifts (BIRDS).
    Huang Y; Coman D; Hyder F; Ali MM
    Bioconjug Chem; 2015 Dec; 26(12):2315-23. PubMed ID: 26497087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macromolecular and dendrimer-based magnetic resonance contrast agents.
    Bumb A; Brechbiel MW; Choyke P
    Acta Radiol; 2010 Sep; 51(7):751-67. PubMed ID: 20590365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and evaluation of gadolinium complexes based on PAMAM as MRI contrast agents.
    Yan GP; Hu B; Liu ML; Li LY
    J Pharm Pharmacol; 2005 Mar; 57(3):351-7. PubMed ID: 15807991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the macromolecular MR contrast agents with ethylenediamine-core versus ammonia-core generation-6 polyamidoamine dendrimer.
    Kobayashi H; Sato N; Kawamoto S; Saga T; Hiraga A; Haque TL; Ishimori T; Konishi J; Togashi K; Brechbiel MW
    Bioconjug Chem; 2001; 12(1):100-7. PubMed ID: 11170372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Encapsulation of gadolinium ferrite nanoparticle in generation 4.5 poly(amidoamine) dendrimer for cancer theranostics applications using low frequency alternating magnetic field.
    Mekonnen TW; Birhan YS; Andrgie AT; Hanurry EY; Darge HF; Chou HY; Lai JY; Tsai HC; Yang JM; Chang YH
    Colloids Surf B Biointerfaces; 2019 Dec; 184():110531. PubMed ID: 31590053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of MRI properties between derivatized DTPA and DOTA gadolinium-dendrimer conjugates.
    Nwe K; Bernardo M; Regino CA; Williams M; Brechbiel MW
    Bioorg Med Chem; 2010 Aug; 18(16):5925-31. PubMed ID: 20663676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zwitterionic Gadolinium(III)-Complexed Dendrimer-Entrapped Gold Nanoparticles for Enhanced Computed Tomography/Magnetic Resonance Imaging of Lung Cancer Metastasis.
    Liu J; Xiong Z; Zhang J; Peng C; Klajnert-Maculewicz B; Shen M; Shi X
    ACS Appl Mater Interfaces; 2019 May; 11(17):15212-15221. PubMed ID: 30964632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multifunctional dendrimer-based nanoparticles for in vivo MR/CT dual-modal molecular imaging of breast cancer.
    Li K; Wen S; Larson AC; Shen M; Zhang Z; Chen Q; Shi X; Zhang G
    Int J Nanomedicine; 2013; 8():2589-600. PubMed ID: 23888113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphinic derivative of DTPA conjugated to a G5 PAMAM dendrimer: an 17O and 1H relaxation study of its Gd(III) complex.
    Lebdusková P; Sour A; Helm L; Tóth E; Kotek J; Lukes I; Merbach AE
    Dalton Trans; 2006 Jul; (28):3399-406. PubMed ID: 16832488
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.