BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 28060465)

  • 1. Ferritin Protein Regulates the Degradation of Iron Oxide Nanoparticles.
    Volatron J; Carn F; Kolosnjaj-Tabi J; Javed Y; Vuong QL; Gossuin Y; Ménager C; Luciani N; Charron G; Hémadi M; Alloyeau D; Gazeau F
    Small; 2017 Jan; 13(2):. PubMed ID: 28060465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological Remediation of Cobalt Ferrite Nanoparticles by Ferritin.
    Volatron J; Kolosnjaj-Tabi J; Javed Y; Vuong QL; Gossuin Y; Neveu S; Luciani N; Hémadi M; Carn F; Alloyeau D; Gazeau F
    Sci Rep; 2017 Jan; 7():40075. PubMed ID: 28067263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lysosomal proteolysis is the primary degradation pathway for cytosolic ferritin and cytosolic ferritin degradation is necessary for iron exit.
    Zhang Y; Mikhael M; Xu D; Li Y; Soe-Lin S; Ning B; Li W; Nie G; Zhao Y; Ponka P
    Antioxid Redox Signal; 2010 Oct; 13(7):999-1009. PubMed ID: 20406137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Phosphate and Ferritin Subunit Composition on the Kinetics, Structure, and Reactivity of the Iron Core in Human Homo- and Heteropolymer Ferritins.
    Reutovich AA; Srivastava AK; Smith GL; Foucher A; Yates DM; Stach EA; Papaefthymiou GC; Arosio P; Bou-Abdallah F
    Biochemistry; 2022 Oct; 61(19):2106-2117. PubMed ID: 36099002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uptake and release of ferritin iron. Surface effects and exchange within the crystalline core.
    Hoy TG; Harrison PM; Shabbir M
    Biochem J; 1974 Jun; 139(3):603-7. PubMed ID: 4855331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of radio frequency magnetic fields on iron release from cage proteins.
    Céspedes O; Ueno S
    Bioelectromagnetics; 2009 Jul; 30(5):336-42. PubMed ID: 19274682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ferritin up-regulation and transient ROS production in cultured brain astrocytes after loading with iron oxide nanoparticles.
    Geppert M; Hohnholt MC; Nürnberger S; Dringen R
    Acta Biomater; 2012 Oct; 8(10):3832-9. PubMed ID: 22750736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-course assessment of the aggregation and metabolization of magnetic nanoparticles.
    Rojas JM; Gavilán H; Del Dedo V; Lorente-Sorolla E; Sanz-Ortega L; da Silva GB; Costo R; Perez-Yagüe S; Talelli M; Marciello M; Morales MP; Barber DF; Gutiérrez L
    Acta Biomater; 2017 Aug; 58():181-195. PubMed ID: 28536061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of ferrous-ferric Fe3O4 nanoparticles in recombinant human ferritin cages.
    Walls MG; Cao C; Yu-Zhang K; Li J; Che R; Pan Y
    Microsc Microanal; 2013 Aug; 19(4):835-41. PubMed ID: 23800760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation of superparamagnetic iron oxide nanoparticle-induced ferritin by lysosomal cathepsins and related immune response.
    Laskar A; Ghosh M; Khattak SI; Li W; Yuan XM
    Nanomedicine (Lond); 2012 May; 7(5):705-17. PubMed ID: 22500704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iron in cytosolic ferritin can be recycled through lysosomal degradation in human fibroblasts.
    Radisky DC; Kaplan J
    Biochem J; 1998 Nov; 336 ( Pt 1)(Pt 1):201-5. PubMed ID: 9806901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ferritin: design and formation of an iron-storage molecule.
    Ford GC; Harrison PM; Rice DW; Smith JM; Treffry A; White JL; Yariv J
    Philos Trans R Soc Lond B Biol Sci; 1984 Feb; 304(1121):551-65. PubMed ID: 6142491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cellular transformation of injected colloidal iron complexes into ferritin and hemosiderin in experimental animals; a study with the aid of electron microscopy.
    RICHTER GW
    J Exp Med; 1959 Feb; 109(2):197-216. PubMed ID: 13620849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissolution of iron oxide nanoparticles inside polymer nanocapsules.
    Möller J; Cebi M; Schroer MA; Paulus M; Degen P; Sahle CJ; Wieland DC; Leick S; Nyrow A; Rehage H; Tolan M
    Phys Chem Chem Phys; 2011 Dec; 13(45):20354-60. PubMed ID: 21993837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemically and biologically harmless versus harmful ferritin/copper-metallothionein couples.
    Carmona F; Mendoza D; Kord S; Asperti M; Arosio P; Atrian S; Capdevila M; Dominguez-Vera JM
    Chemistry; 2015 Jan; 21(2):808-13. PubMed ID: 25370199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradability of superparamagnetic nanoparticles in a model of intracellular environment: follow-up of magnetic, structural and chemical properties.
    Lévy M; Lagarde F; Maraloiu VA; Blanchin MG; Gendron F; Wilhelm C; Gazeau F
    Nanotechnology; 2010 Oct; 21(39):395103. PubMed ID: 20820094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ferroxidase-Mediated Iron Oxide Biomineralization: Novel Pathways to Multifunctional Nanoparticles.
    Zeth K; Hoiczyk E; Okuda M
    Trends Biochem Sci; 2016 Feb; 41(2):190-203. PubMed ID: 26719091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solving Biology's Iron Chemistry Problem with Ferritin Protein Nanocages.
    Theil EC; Tosha T; Behera RK
    Acc Chem Res; 2016 May; 49(5):784-91. PubMed ID: 27136423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anomalous nuclear magnetic relaxation of aqueous solutions of ferritin: an unprecedented first-order mechanism.
    Gossuin Y; Roch A; Muller RN; Gillis P; Lo Bue F
    Magn Reson Med; 2002 Dec; 48(6):959-64. PubMed ID: 12465104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iron-rich ferritin in the hypoxia-tolerant rodent Spalax ehrenbergi: a naturally-occurring biomarker confirms the internalization and pathways of intracellular macromolecules.
    Iancu TC; Arad T; Shams I; Manov I
    J Struct Biol; 2014 Sep; 187(3):254-265. PubMed ID: 25050761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.