BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 28060481)

  • 21. A molecular dynamics study comparing a wild-type with a multiple drug resistant HIV protease: differences in flap and aspartate 25 cavity dimensions.
    Seibold SA; Cukier RI
    Proteins; 2007 Nov; 69(3):551-65. PubMed ID: 17623840
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of conformational fluctuations in the enzymatic reaction of HIV-1 protease.
    Piana S; Carloni P; Parrinello M
    J Mol Biol; 2002 May; 319(2):567-83. PubMed ID: 12051929
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A poke in the eye: inhibiting HIV-1 protease through its flap-recognition pocket.
    Damm KL; Ung PM; Quintero JJ; Gestwicki JE; Carlson HA
    Biopolymers; 2008 Aug; 89(8):643-52. PubMed ID: 18381626
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interchain hydrophobic clustering promotes rigidity in HIV-1 protease flap dynamics: new insights from molecular dynamics.
    Meher BR; Kumar MV; Bandyopadhyay P
    J Biomol Struct Dyn; 2014; 32(6):899-915. PubMed ID: 23782135
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Solvation influences flap collapse in HIV-1 protease.
    Meagher KL; Carlson HA
    Proteins; 2005 Jan; 58(1):119-25. PubMed ID: 15521062
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A contribution to the drug resistance mechanism of darunavir, amprenavir, indinavir, and saquinavir complexes with HIV-1 protease due to flap mutation I50V: a systematic MM-PBSA and thermodynamic integration study.
    Leonis G; Steinbrecher T; Papadopoulos MG
    J Chem Inf Model; 2013 Aug; 53(8):2141-53. PubMed ID: 23834142
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Flap opening mechanism of HIV-1 protease.
    Tóth G; Borics A
    J Mol Graph Model; 2006 May; 24(6):465-74. PubMed ID: 16188477
    [TBL] [Abstract][Full Text] [Related]  

  • 28. How conformational changes can affect catalysis, inhibition and drug resistance of enzymes with induced-fit binding mechanism such as the HIV-1 protease.
    Weikl TR; Hemmateenejad B
    Biochim Biophys Acta; 2013 May; 1834(5):867-73. PubMed ID: 23376188
    [TBL] [Abstract][Full Text] [Related]  

  • 29. HIV-1 protease flaps spontaneously open and reclose in molecular dynamics simulations.
    Hornak V; Okur A; Rizzo RC; Simmerling C
    Proc Natl Acad Sci U S A; 2006 Jan; 103(4):915-20. PubMed ID: 16418268
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Could the FDA-approved anti-HIV PR inhibitors be promising anticancer agents? An answer from enhanced docking approach and molecular dynamics analyses.
    Arodola OA; Soliman ME
    Drug Des Devel Ther; 2015; 9():6055-65. PubMed ID: 26622167
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular dynamics simulations of ligand-induced flap closing in HIV-1 protease approach X-ray resolution: establishing the role of bound water in the flap closing mechanism.
    Singh G; Senapati S
    Biochemistry; 2008 Oct; 47(40):10657-64. PubMed ID: 18785756
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular dynamics studies on HIV-1 protease: a comparison of the flap motions between wild type protease and the M46I/G51D double mutant.
    Lauria A; Ippolito M; Almerico AM
    J Mol Model; 2007 Nov; 13(11):1151-6. PubMed ID: 17786489
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of drug-resistant mutations on the dynamic properties of HIV-1 protease and inhibition by Amprenavir and Darunavir.
    Yu Y; Wang J; Shao Q; Shi J; Zhu W
    Sci Rep; 2015 May; 5():10517. PubMed ID: 26012849
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identifying binding hot spots on protein surfaces by mixed-solvent molecular dynamics: HIV-1 protease as a test case.
    Ung PM; Ghanakota P; Graham SE; Lexa KW; Carlson HA
    Biopolymers; 2016 Jan; 105(1):21-34. PubMed ID: 26385317
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An insight into the opening path to semi-open conformation of HIV-1 protease by molecular dynamics simulation.
    Lu T; Chen Y; Li XY
    AIDS; 2010 May; 24(8):1121-5. PubMed ID: 20299960
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Targeting dynamic pockets of HIV-1 protease by structure-based computational screening for allosteric inhibitors.
    Kunze J; Todoroff N; Schneider P; Rodrigues T; Geppert T; Reisen F; Schreuder H; Saas J; Hessler G; Baringhaus KH; Schneider G
    J Chem Inf Model; 2014 Mar; 54(3):987-91. PubMed ID: 24528206
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coarse-grained molecular dynamics of ligands binding into protein: The case of HIV-1 protease inhibitors.
    Li D; Liu MS; Ji B; Hwang K; Huang Y
    J Chem Phys; 2009 Jun; 130(21):215102. PubMed ID: 19508101
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Insights into the mechanism of drug resistance: X-ray structure analysis of multi-drug resistant HIV-1 protease ritonavir complex.
    Liu Z; Yedidi RS; Wang Y; Dewdney TG; Reiter SJ; Brunzelle JS; Kovari IA; Kovari LC
    Biochem Biophys Res Commun; 2013 Feb; 431(2):232-8. PubMed ID: 23313846
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A solution NMR study of the binding kinetics and the internal dynamics of an HIV-1 protease-substrate complex.
    Katoh E; Louis JM; Yamazaki T; Gronenborn AM; Torchia DA; Ishima R
    Protein Sci; 2003 Jul; 12(7):1376-85. PubMed ID: 12824484
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Targeting structural flexibility in HIV-1 protease inhibitor binding.
    Hornak V; Simmerling C
    Drug Discov Today; 2007 Feb; 12(3-4):132-8. PubMed ID: 17275733
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.