These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 28060481)

  • 61. Ligand modifications to reduce the relative resistance of multi-drug resistant HIV-1 protease.
    Dewdney TG; Wang Y; Liu Z; Sharma SK; Reiter SJ; Brunzelle JS; Kovari IA; Woster PM; Kovari LC
    Bioorg Med Chem; 2013 Dec; 21(23):7430-4. PubMed ID: 24128815
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Toward High-Throughput Predictive Modeling of Protein Binding/Unbinding Kinetics.
    Chiu SH; Xie L
    J Chem Inf Model; 2016 Jun; 56(6):1164-74. PubMed ID: 27159844
    [TBL] [Abstract][Full Text] [Related]  

  • 63. On the link between conformational changes, ligand binding and heat capacity.
    Vega S; Abian O; Velazquez-Campoy A
    Biochim Biophys Acta; 2016 May; 1860(5):868-878. PubMed ID: 26476135
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Cooperative fluctuations of unliganded and substrate-bound HIV-1 protease: a structure-based analysis on a variety of conformations from crystallography and molecular dynamics simulations.
    Kurt N; Scott WR; Schiffer CA; Haliloglu T
    Proteins; 2003 May; 51(3):409-22. PubMed ID: 12696052
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Amide hydrogen exchange in HIV-1 subtype B and C proteases--insights into reduced drug susceptibility and dimer stability.
    Naicker P; Stoychev S; Dirr HW; Sayed Y
    FEBS J; 2014 Dec; 281(24):5395-410. PubMed ID: 25283307
    [TBL] [Abstract][Full Text] [Related]  

  • 66. New active HIV-1 protease inhibitors derived from 3-hexanol: conformation study of the free inhibitors in crystalline state and in complex with the enzyme.
    Ziółkowska NE; Bujacz A; Randad RS; Erickson JW; Skálová T; Hašek J; Bujacz G
    Chem Biol Drug Des; 2012 May; 79(5):798-809. PubMed ID: 22296826
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Structure-based ligand design by dynamically assembling molecular building blocks at binding site.
    Liu H; Duan Z; Luo Q; Shi Y
    Proteins; 1999 Sep; 36(4):462-70. PubMed ID: 10450088
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Occluded molecular surface analysis of ligand-macromolecule contacts: application to HIV-1 protease-inhibitor complexes.
    Pattabiraman N
    J Med Chem; 1999 Sep; 42(19):3821-34. PubMed ID: 10508431
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Analysis of Ligand-Receptor Association and Intermediate Transfer Rates in Multienzyme Nanostructures with All-Atom Brownian Dynamics Simulations.
    Roberts CC; Chang CE
    J Phys Chem B; 2016 Aug; 120(33):8518-31. PubMed ID: 27248669
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Understanding ligand-receptor non-covalent binding kinetics using molecular modeling.
    Tang Z; Roberts CC; Chang CA
    Front Biosci (Landmark Ed); 2017 Jan; 22(6):960-981. PubMed ID: 27814657
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Multiscale Approach for Computing Gated Ligand Binding from Molecular Dynamics and Brownian Dynamics Simulations.
    Sadiq SK; Muñiz Chicharro A; Friedrich P; Wade RC
    J Chem Theory Comput; 2021 Dec; 17(12):7912-7929. PubMed ID: 34739248
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Variational implicit-solvent predictions of the dry-wet transition pathways for ligand-receptor binding and unbinding kinetics.
    Zhou S; Weiß RG; Cheng LT; Dzubiella J; McCammon JA; Li B
    Proc Natl Acad Sci U S A; 2019 Jul; 116(30):14989-14994. PubMed ID: 31270236
    [TBL] [Abstract][Full Text] [Related]  

  • 73. NMR relaxation in proteins with fast internal motions and slow conformational exchange: model-free framework and Markov state simulations.
    Xia J; Deng NJ; Levy RM
    J Phys Chem B; 2013 Jun; 117(22):6625-34. PubMed ID: 23638941
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Binding Mode and Induced Fit Predictions for Prospective Computational Drug Design.
    Grebner C; Iegre J; Ulander J; Edman K; Hogner A; Tyrchan C
    J Chem Inf Model; 2016 Apr; 56(4):774-87. PubMed ID: 26974351
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Essential role of conformational selection in ligand binding.
    Vogt AD; Pozzi N; Chen Z; Di Cera E
    Biophys Chem; 2014 Feb; 186():13-21. PubMed ID: 24113284
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Uncovering water effects in protein-ligand recognition: importance in the second hydration shell and binding kinetics.
    Chen W; He H; Wang J; Wang J; Chang CA
    Phys Chem Chem Phys; 2023 Jan; 25(3):2098-2109. PubMed ID: 36562309
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Kinetics of Ligand-Protein Dissociation from All-Atom Simulations: Are We There Yet?
    Ribeiro JML; Tsai ST; Pramanik D; Wang Y; Tiwary P
    Biochemistry; 2019 Jan; 58(3):156-165. PubMed ID: 30547565
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Multiple routes and milestones in the folding of HIV-1 protease monomer.
    Bonomi M; Barducci A; Gervasio FL; Parrinello M
    PLoS One; 2010 Oct; 5(10):e13208. PubMed ID: 20967249
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Solvent fluctuations in hydrophobic cavity-ligand binding kinetics.
    Setny P; Baron R; Michael Kekenes-Huskey P; McCammon JA; Dzubiella J
    Proc Natl Acad Sci U S A; 2013 Jan; 110(4):1197-202. PubMed ID: 23297241
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Principles for Tuning Hydrophobic Ligand-Receptor Binding Kinetics.
    Weiß RG; Setny P; Dzubiella J
    J Chem Theory Comput; 2017 Jun; 13(6):3012-3019. PubMed ID: 28494155
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.