These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 28060494)

  • 1. Copper Complexes as Bioinspired Models for Lytic Polysaccharide Monooxygenases.
    Concia AL; Beccia MR; Orio M; Ferre FT; Scarpellini M; Biaso F; Guigliarelli B; Réglier M; Simaan AJ
    Inorg Chem; 2017 Feb; 56(3):1023-1026. PubMed ID: 28060494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic Mechanism of Fungal Lytic Polysaccharide Monooxygenases Investigated by First-Principles Calculations.
    Bertini L; Breglia R; Lambrughi M; Fantucci P; De Gioia L; Borsari M; Sola M; Bortolotti CA; Bruschi M
    Inorg Chem; 2018 Jan; 57(1):86-97. PubMed ID: 29232119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developing mononuclear copper-active-oxygen complexes relevant to reactive intermediates of biological oxidation reactions.
    Itoh S
    Acc Chem Res; 2015 Jul; 48(7):2066-74. PubMed ID: 26086527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum mechanical calculations suggest that lytic polysaccharide monooxygenases use a copper-oxyl, oxygen-rebound mechanism.
    Kim S; Ståhlberg J; Sandgren M; Paton RS; Beckham GT
    Proc Natl Acad Sci U S A; 2014 Jan; 111(1):149-54. PubMed ID: 24344312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting the reactive intermediate in polysaccharide monooxygenases.
    Hedegård ED; Ryde U
    J Biol Inorg Chem; 2017 Oct; 22(7):1029-1037. PubMed ID: 28698982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling a 'histidine brace' motif in mononuclear copper monooxygenases.
    Fukatsu A; Morimoto Y; Sugimoto H; Itoh S
    Chem Commun (Camb); 2020 May; 56(38):5123-5126. PubMed ID: 32297615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative cleavage of polysaccharides by monocopper enzymes depends on H
    Bissaro B; Røhr ÅK; Müller G; Chylenski P; Skaugen M; Forsberg Z; Horn SJ; Vaaje-Kolstad G; Eijsink VGH
    Nat Chem Biol; 2017 Oct; 13(10):1123-1128. PubMed ID: 28846668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterogeneity in the Histidine-brace Copper Coordination Sphere in Auxiliary Activity Family 10 (AA10) Lytic Polysaccharide Monooxygenases.
    Chaplin AK; Wilson MT; Hough MA; Svistunenko DA; Hemsworth GR; Walton PH; Vijgenboom E; Worrall JAR
    J Biol Chem; 2016 Jun; 291(24):12838-12850. PubMed ID: 27129229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectroscopic and computational insight into the activation of O2 by the mononuclear Cu center in polysaccharide monooxygenases.
    Kjaergaard CH; Qayyum MF; Wong SD; Xu F; Hemsworth GR; Walton DJ; Young NA; Davies GJ; Walton PH; Johansen KS; Hodgson KO; Hedman B; Solomon EI
    Proc Natl Acad Sci U S A; 2014 Jun; 111(24):8797-802. PubMed ID: 24889637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methylation of the N-terminal histidine protects a lytic polysaccharide monooxygenase from auto-oxidative inactivation.
    Petrović DM; Bissaro B; Chylenski P; Skaugen M; Sørlie M; Jensen MS; Aachmann FL; Courtade G; Várnai A; Eijsink VGH
    Protein Sci; 2018 Sep; 27(9):1636-1650. PubMed ID: 29971843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection and Characterization of a Novel Copper-Dependent Intermediate in a Lytic Polysaccharide Monooxygenase.
    Singh RK; Blossom BM; Russo DA; Singh R; Weihe H; Andersen NH; Tiwari MK; Jensen PE; Felby C; Bjerrum MJ
    Chemistry; 2020 Jan; 26(2):454-463. PubMed ID: 31603264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxygen Activation at the Active Site of a Fungal Lytic Polysaccharide Monooxygenase.
    O'Dell WB; Agarwal PK; Meilleur F
    Angew Chem Int Ed Engl; 2017 Jan; 56(3):767-770. PubMed ID: 28004877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative study of two chitin-active and two cellulose-active AA10-type lytic polysaccharide monooxygenases.
    Forsberg Z; Røhr AK; Mekasha S; Andersson KK; Eijsink VG; Vaaje-Kolstad G; Sørlie M
    Biochemistry; 2014 Mar; 53(10):1647-56. PubMed ID: 24559135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Side-on cupric-superoxo triplet complexes as competent agents for H-abstraction relevant to the active site of PHM.
    Sánchez-Eguía BN; Flores-Alamo M; Orio M; Castillo I
    Chem Commun (Camb); 2015 Jul; 51(55):11134-7. PubMed ID: 26073167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lytic polysaccharide monooxygenases and other histidine-brace copper proteins: structure, oxygen activation and biotechnological applications.
    Ipsen JØ; Hallas-Møller M; Brander S; Lo Leggio L; Johansen KS
    Biochem Soc Trans; 2021 Feb; 49(1):531-540. PubMed ID: 33449071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and electronic determinants of lytic polysaccharide monooxygenase reactivity on polysaccharide substrates.
    Simmons TJ; Frandsen KEH; Ciano L; Tryfona T; Lenfant N; Poulsen JC; Wilson LFL; Tandrup T; Tovborg M; Schnorr K; Johansen KS; Henrissat B; Walton PH; Lo Leggio L; Dupree P
    Nat Commun; 2017 Oct; 8(1):1064. PubMed ID: 29057953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural diversity of lytic polysaccharide monooxygenases.
    Vaaje-Kolstad G; Forsberg Z; Loose JS; Bissaro B; Eijsink VG
    Curr Opin Struct Biol; 2017 Jun; 44():67-76. PubMed ID: 28086105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polysaccharide degradation by lytic polysaccharide monooxygenases.
    Forsberg Z; Sørlie M; Petrović D; Courtade G; Aachmann FL; Vaaje-Kolstad G; Bissaro B; Røhr ÅK; Eijsink VG
    Curr Opin Struct Biol; 2019 Dec; 59():54-64. PubMed ID: 30947104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the catalytic mechanisms of lytic polysaccharide monooxygenases.
    Walton PH; Davies GJ
    Curr Opin Chem Biol; 2016 Apr; 31():195-207. PubMed ID: 27094791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active site models for the Cu(A) site of peptidylglycine α-hydroxylating monooxygenase and dopamine β-monooxygenase.
    Kunishita A; Ertem MZ; Okubo Y; Tano T; Sugimoto H; Ohkubo K; Fujieda N; Fukuzumi S; Cramer CJ; Itoh S
    Inorg Chem; 2012 Sep; 51(17):9465-80. PubMed ID: 22908844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.