These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 28060494)

  • 21. Theoretical exploration of the oxidative properties of a [(tren Me1)CuO2]+ adduct relevant to copper monooxygenase enzymes: insights into competitive dehydrogenation versus hydroxylation reaction pathways.
    de la Lande A; Parisel O; Gérard H; Moliner V; Reinaud O
    Chemistry; 2008; 14(21):6465-73. PubMed ID: 18512825
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multipoint Precision Binding of Substrate Protects Lytic Polysaccharide Monooxygenases from Self-Destructive Off-Pathway Processes.
    Loose JSM; Arntzen MØ; Bissaro B; Ludwig R; Eijsink VGH; Vaaje-Kolstad G
    Biochemistry; 2018 Jul; 57(28):4114-4124. PubMed ID: 29901989
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Activity, stability and 3-D structure of the Cu(ii) form of a chitin-active lytic polysaccharide monooxygenase from Bacillus amyloliquefaciens.
    Gregory RC; Hemsworth GR; Turkenburg JP; Hart SJ; Walton PH; Davies GJ
    Dalton Trans; 2016 Nov; 45(42):16904-16912. PubMed ID: 27722375
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Random-Sequential Kinetic Mechanism for Polysaccharide Monooxygenases.
    Hangasky JA; Marletta MA
    Biochemistry; 2018 Jun; 57(22):3191-3199. PubMed ID: 29683313
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural and electronic snapshots during the transition from a Cu(II) to Cu(I) metal center of a lytic polysaccharide monooxygenase by X-ray photoreduction.
    Gudmundsson M; Kim S; Wu M; Ishida T; Momeni MH; Vaaje-Kolstad G; Lundberg D; Royant A; Ståhlberg J; Eijsink VG; Beckham GT; Sandgren M
    J Biol Chem; 2014 Jul; 289(27):18782-92. PubMed ID: 24828494
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The framework of polysaccharide monooxygenase structure and chemistry.
    Span EA; Marletta MA
    Curr Opin Struct Biol; 2015 Dec; 35():93-9. PubMed ID: 26615470
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oxidative cleavage of cellulose by fungal copper-dependent polysaccharide monooxygenases.
    Beeson WT; Phillips CM; Cate JH; Marletta MA
    J Am Chem Soc; 2012 Jan; 134(2):890-2. PubMed ID: 22188218
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Distinct Interaction of Lytic Polysaccharide Monooxygenase with Cellulose Revealed by Computational and Biochemical Studies.
    Zhou H; Zhang Y; Li T; Tan H; Li G; Yin H
    J Phys Chem Lett; 2020 May; 11(10):3987-3992. PubMed ID: 32352790
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent insights into lytic polysaccharide monooxygenases (LPMOs).
    Tandrup T; Frandsen KEH; Johansen KS; Berrin JG; Lo Leggio L
    Biochem Soc Trans; 2018 Dec; 46(6):1431-1447. PubMed ID: 30381341
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mononuclear copper(II)-superoxo complexes that mimic the structure and reactivity of the active centers of PHM and DbetaM.
    Kunishita A; Kubo M; Sugimoto H; Ogura T; Sato K; Takui T; Itoh S
    J Am Chem Soc; 2009 Mar; 131(8):2788-9. PubMed ID: 19209864
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular Mechanism of Substrate Oxidation in Lytic Polysaccharide Monooxygenases: Insight from Theoretical Investigations.
    Hagemann MM; Hedegård ED
    Chemistry; 2023 Feb; 29(7):e202202379. PubMed ID: 36207279
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural dynamics of lytic polysaccharide monoxygenases reveals a highly flexible substrate binding region.
    Arora R; Bharval P; Sarswati S; Sen TZ; Yennamalli RM
    J Mol Graph Model; 2019 May; 88():1-10. PubMed ID: 30612037
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Supramolecular modeling of mono-copper enzyme active sites with calix[6]arene-based funnel complexes.
    Le Poul N; Le Mest Y; Jabin I; Reinaud O
    Acc Chem Res; 2015 Jul; 48(7):2097-106. PubMed ID: 26103534
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Classification of fungal and bacterial lytic polysaccharide monooxygenases.
    Busk PK; Lange L
    BMC Genomics; 2015 May; 16(1):368. PubMed ID: 25956378
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the roles of AA15 lytic polysaccharide monooxygenases derived from the termite Coptotermes gestroi.
    Franco Cairo JPL; Cannella D; Oliveira LC; Gonçalves TA; Rubio MV; Terrasan CRF; Tramontina R; Mofatto LS; Carazzolle MF; Garcia W; Felby C; Damasio A; Walton PH; Squina F
    J Inorg Biochem; 2021 Mar; 216():111316. PubMed ID: 33421883
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oxidative Cleavage of Glycosidic Bonds by Synthetic Mimics of Lytic Polysaccharide Monooxygenases.
    Chen K; Zangiabadi M; Zhao Y
    Org Lett; 2022 May; 24(18):3426-3430. PubMed ID: 35503979
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The copper centers of tyramine β-monooxygenase and its catalytic-site methionine variants: an X-ray absorption study.
    Hess CR; Klinman JP; Blackburn NJ
    J Biol Inorg Chem; 2010 Nov; 15(8):1195-207. PubMed ID: 20544364
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cellulose degradation by polysaccharide monooxygenases.
    Beeson WT; Vu VV; Span EA; Phillips CM; Marletta MA
    Annu Rev Biochem; 2015; 84():923-46. PubMed ID: 25784051
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fungal lytic polysaccharide monooxygenases bind starch and β-cyclodextrin similarly to amylolytic hydrolases.
    Nekiunaite L; Isaksen T; Vaaje-Kolstad G; Abou Hachem M
    FEBS Lett; 2016 Aug; 590(16):2737-47. PubMed ID: 27397613
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Is density functional theory accurate for lytic polysaccharide monooxygenase enzymes?
    Larsson ED; Dong G; Veryazov V; Ryde U; Hedegård ED
    Dalton Trans; 2020 Feb; 49(5):1501-1512. PubMed ID: 31922155
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.