These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 28060620)

  • 21. Silica-Silver Nanocomposites as Regenerable Sorbents for Hg
    Cao T; Li Z; Xiong Y; Yang Y; Xu S; Bisson T; Gupta R; Xu Z
    Environ Sci Technol; 2017 Oct; 51(20):11909-11917. PubMed ID: 28823171
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mercury adsorption characteristics of carbon sorbent with low surface area.
    Park J; Lee SS
    J Air Waste Manag Assoc; 2021 Nov; 71(11):1445-1452. PubMed ID: 34292852
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mercury removal from flue gases by novel regenerable magnetic nanocomposite sorbents.
    Dong J; Xu Z; Kuznicki SM
    Environ Sci Technol; 2009 May; 43(9):3266-71. PubMed ID: 19534145
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Novel regenerable sorbent based on Zr-Mn binary metal oxides for flue gas mercury retention and recovery.
    Xie J; Qu Z; Yan N; Yang S; Chen W; Hu L; Huang W; Liu P
    J Hazard Mater; 2013 Oct; 261():206-13. PubMed ID: 23933289
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Theoretical evaluation on selective adsorption characteristics of alkali metal-based sorbents for gaseous oxidized mercury.
    Tang H; Duan Y; Zhu C; Cai T; Li C; Cai L
    Chemosphere; 2017 Oct; 184():711-719. PubMed ID: 28641222
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biomass gasification chars for mercury capture from a simulated flue gas of coal combustion.
    Fuente-Cuesta A; Diaz-Somoano M; Lopez-Anton MA; Cieplik M; Fierro JL; Martínez-Tarazona MR
    J Environ Manage; 2012 May; 98():23-8. PubMed ID: 22325640
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An X-ray photoelectron spectroscopy study of surface changes on brominated and sulfur-treated activated carbon sorbents during mercury capture: performance of pellet versus fiber sorbents.
    Saha A; Abram DN; Kuhl KP; Paradis J; Crawford JL; Sasmaz E; Chang R; Jaramillo TF; Wilcox J
    Environ Sci Technol; 2013 Dec; 47(23):13695-701. PubMed ID: 24256554
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Different Design Strategies for Metal Sulfide Sorbents to Capture Low Concentrations of Gaseous Hg
    Wang C; Mei J; Hong Q; Xie F; Ding Z; Ma C; Yang S
    Environ Sci Technol; 2021 May; 55(10):7094-7101. PubMed ID: 33955737
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combined experimental and theoretical studies on adsorption mechanisms of gaseous mercury(II) by calcium-based sorbents: The effect of unsaturated oxygen sites.
    Tang H; Li C; Duan Y; Zhu C; Cai L
    Sci Total Environ; 2019 Mar; 656():937-945. PubMed ID: 30625679
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vanadium silicate (EVS)-supported silver nanoparticles: A novel catalytic sorbent for elemental mercury removal from flue gas.
    Zhou Z; Cao T; Liu X; Xu S; Xu Z; Xu M
    J Hazard Mater; 2019 Aug; 375():1-8. PubMed ID: 31030075
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of temperature and regeneration cycles on Hg capture and efficiency by structured Au/C regenerable sorbents.
    Ballestero D; Gómez-Giménez C; García-Díez E; Juan R; Rubio B; Izquierdo MT
    J Hazard Mater; 2013 Sep; 260():247-54. PubMed ID: 23774780
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of impregnation sequence of Pd/Ce/γ-Al
    Huo Q; Yue C; Wang Y; Han L; Wang J; Chen S; Bao W; Chang L; Xie K
    Chemosphere; 2020 Jun; 249():126164. PubMed ID: 32065997
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Elimination of elemental mercury in flue gas by Arachis hypogaea Linn. shell generated activated carbon.
    Duan X; Yuan CG; Jing T; Yuan X; Xie J
    Environ Sci Pollut Res Int; 2020 Jun; 27(16):20055-20065. PubMed ID: 32236807
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of mercury binding onto a novel brominated biomass ash sorbent by X-ray absorption spectroscopy.
    Bisson TM; MacLean LC; Hu Y; Xu Z
    Environ Sci Technol; 2012 Nov; 46(21):12186-93. PubMed ID: 23020596
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dual Roles of Nano-Sulfide in Efficient Removal of Elemental Mercury from Coal Combustion Flue Gas within a Wide Temperature Range.
    Zhao J; Li H; Yang Z; Zhu L; Zhang M; Feng Y; Qu W; Yang J; Shih K
    Environ Sci Technol; 2018 Nov; 52(21):12926-12933. PubMed ID: 30351029
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adsorption behavior of mercuric oxide clusters on activated carbon and the effect of SO
    Gao Z; Liu X; Li A; Ma C; Li X; Ding X; Yang W
    J Mol Model; 2019 May; 25(5):142. PubMed ID: 31044271
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Absorption characteristics of elemental mercury in mercury chloride solutions.
    Ma Y; Xu H; Qu Z; Yan N; Wang W
    J Environ Sci (China); 2014 Nov; 26(11):2257-65. PubMed ID: 25458680
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Potential hazards of brominated carbon sorbents for mercury emission control.
    Bisson TM; Xu Z
    Environ Sci Technol; 2015 Feb; 49(4):2496-502. PubMed ID: 25594726
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of flue gas components in mercury oxidation over TiO2 supported MnOx-CeO2 mixed-oxide at low temperature.
    Li H; Wu CY; Li Y; Li L; Zhao Y; Zhang J
    J Hazard Mater; 2012 Dec; 243():117-23. PubMed ID: 23131500
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sorption and stability of mercury on activated carbon for emission control.
    Graydon JW; Zhang X; Kirk DW; Jia CQ
    J Hazard Mater; 2009 Sep; 168(2-3):978-82. PubMed ID: 19327890
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.