BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 28060874)

  • 1. Salmon DNA Accelerates Bone Regeneration by Inducing Osteoblast Migration.
    Sato A; Kajiya H; Mori N; Sato H; Fukushima T; Kido H; Ohno J
    PLoS One; 2017; 12(1):e0169522. PubMed ID: 28060874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A salmon DNA scaffold promotes osteogenesis through activation of sodium-dependent phosphate cotransporters.
    Katsumata Y; Kajiya H; Okabe K; Fukushima T; Ikebe T
    Biochem Biophys Res Commun; 2015 Dec; 468(4):622-8. PubMed ID: 26551467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium-containing scaffolds induce bone regeneration by regulating mesenchymal stem cell differentiation and migration.
    Aquino-Martínez R; Angelo AP; Pujol FV
    Stem Cell Res Ther; 2017 Nov; 8(1):265. PubMed ID: 29145866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osteogenic potential for replacing cells in rat cranial defects implanted with a DNA/protamine complex paste.
    Toda M; Ohno J; Shinozaki Y; Ozaki M; Fukushima T
    Bone; 2014 Oct; 67():237-45. PubMed ID: 25051019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of Osteogenic Growth Peptide (OGP) and OGP(10-14) in Bone Regeneration: A Review.
    Pigossi SC; Medeiros MC; Saska S; Cirelli JA; Scarel-Caminaga RM
    Int J Mol Sci; 2016 Nov; 17(11):. PubMed ID: 27879684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photothermal stress triggered by near infrared-irradiated carbon nanotubes promotes bone deposition in rat calvarial defects.
    Yanagi T; Kajiya H; Kawaguchi M; Kido H; Fukushima T
    J Biomater Appl; 2015 Mar; 29(8):1109-18. PubMed ID: 25336291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxysterols enhance osteoblast differentiation in vitro and bone healing in vivo.
    Aghaloo TL; Amantea CM; Cowan CM; Richardson JA; Wu BM; Parhami F; Tetradis S
    J Orthop Res; 2007 Nov; 25(11):1488-97. PubMed ID: 17568450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. N-acetyl cysteine as an osteogenesis-enhancing molecule for bone regeneration.
    Yamada M; Tsukimura N; Ikeda T; Sugita Y; Att W; Kojima N; Kubo K; Ueno T; Sakurai K; Ogawa T
    Biomaterials; 2013 Aug; 34(26):6147-56. PubMed ID: 23711675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of calcium phosphate-loaded carboxymethyl cellulose non-woven sheets for bone regeneration.
    Qi P; Ohba S; Hara Y; Fuke M; Ogawa T; Ohta S; Ito T
    Carbohydr Polym; 2018 Jun; 189():322-330. PubMed ID: 29580416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cells responding to surface structure of calcium phosphate ceramics for bone regeneration.
    Zhang J; Sun L; Luo X; Barbieri D; de Bruijn JD; van Blitterswijk CA; Moroni L; Yuan H
    J Tissue Eng Regen Med; 2017 Nov; 11(11):3273-3283. PubMed ID: 28176491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. IL-17 inhibits osteoblast differentiation and bone regeneration in rat.
    Kim YG; Park JW; Lee JM; Suh JY; Lee JK; Chang BS; Um HS; Kim JY; Lee Y
    Arch Oral Biol; 2014 Sep; 59(9):897-905. PubMed ID: 24907519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Is 1, 25-dihydroxyvitamin D3 an ideal substitute for dexamethasone for inducing osteogenic differentiation of human adipose tissue-derived stromal cells in vitro?
    Zhou YS; Liu YS; Tan JG
    Chin Med J (Engl); 2006 Aug; 119(15):1278-86. PubMed ID: 16919187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Copper-doped borosilicate bioactive glass scaffolds with improved angiogenic and osteogenic capacity for repairing osseous defects.
    Zhao S; Wang H; Zhang Y; Huang W; Rahaman MN; Liu Z; Wang D; Zhang C
    Acta Biomater; 2015 Mar; 14():185-96. PubMed ID: 25534470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term controlled delivery of rhBMP-2 from collagen-hydroxyapatite scaffolds for superior bone tissue regeneration.
    Quinlan E; Thompson EM; Matsiko A; O'Brien FJ; López-Noriega A
    J Control Release; 2015 Jun; 207():112-9. PubMed ID: 25817394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Harmine promotes osteoblast differentiation through bone morphogenetic protein signaling.
    Yonezawa T; Lee JW; Hibino A; Asai M; Hojo H; Cha BY; Teruya T; Nagai K; Chung UI; Yagasaki K; Woo JT
    Biochem Biophys Res Commun; 2011 Jun; 409(2):260-5. PubMed ID: 21570953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Octacalcium phosphate collagen composite stimulates the expression and activity of osteogenic factors to promote bone regeneration.
    Kouketsu A; Matsui K; Kawai T; Ezoe Y; Yanagisawa T; Yasuda A; Takahashi T; Kamakura S
    J Tissue Eng Regen Med; 2020 Jan; 14(1):99-107. PubMed ID: 31721475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimulatory Effects of KPR-A148 on Osteoblast Differentiation and Bone Regeneration.
    Lim S; Kim JA; Lee T; Lee D; Nam SH; Lim J; Park EK
    Tissue Eng Regen Med; 2019 Aug; 16(4):405-413. PubMed ID: 31413944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parameters in three-dimensional osteospheroids of telomerized human mesenchymal (stromal) stem cells grown on osteoconductive scaffolds that predict in vivo bone-forming potential.
    Burns JS; Rasmussen PL; Larsen KH; Schrøder HD; Kassem M
    Tissue Eng Part A; 2010 Jul; 16(7):2331-42. PubMed ID: 20196644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple mechanisms are involved in inhibition of osteoblast differentiation by PTHrP and PTH in KS483 Cells.
    van der Horst G; Farih-Sips H; Löwik CW; Karperien M
    J Bone Miner Res; 2005 Dec; 20(12):2233-44. PubMed ID: 16294276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of nano-structured bioceramic surface on osteogenic differentiation of adipose derived stem cells.
    Xia L; Lin K; Jiang X; Fang B; Xu Y; Liu J; Zeng D; Zhang M; Zhang X; Chang J; Zhang Z
    Biomaterials; 2014 Oct; 35(30):8514-27. PubMed ID: 25002263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.