BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 28060906)

  • 1. Steady-State Motion Visual Evoked Potential (SSMVEP) Based on Equal Luminance Colored Enhancement.
    Yan W; Xu G; Li M; Xie J; Han C; Zhang S; Luo A; Chen C
    PLoS One; 2017; 12(1):e0169642. PubMed ID: 28060906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of fatigue on steady state motion visual evoked potentials: Optimised stimulus parameters for a zoom motion-based brain-computer interface.
    Chai X; Zhang Z; Guan K; Zhang T; Xu J; Niu H
    Comput Methods Programs Biomed; 2020 Nov; 196():105650. PubMed ID: 32682092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study on the effects of brightness contrast on steady-state motion visual evoked potential.
    Wenqiang Yan ; Guanghua Xu ; Jun Xie ; Min Li ; Sicong Zhang ; Ailing Luo
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2263-2266. PubMed ID: 29060348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Radial Zoom Motion-Based Paradigm for Steady State Motion Visual Evoked Potentials.
    Chai X; Zhang Z; Guan K; Liu G; Niu H
    Front Hum Neurosci; 2019; 13():127. PubMed ID: 31040775
    [No Abstract]   [Full Text] [Related]  

  • 5. Highly Interactive Brain-Computer Interface Based on Flicker-Free Steady-State Motion Visual Evoked Potential.
    Han C; Xu G; Xie J; Chen C; Zhang S
    Sci Rep; 2018 Apr; 8(1):5835. PubMed ID: 29643430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Study of Steady State Motion Visual Evoked Potential-based Visual Stimulation of BCI System].
    Liu G; Zhang Z; Chai X; Lu Y; Fan Y; Niu H
    Zhongguo Yi Liao Qi Xie Za Zhi; 2018 Sep; 42(5):313-316. PubMed ID: 30358339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Role of Visual Noise in Influencing Mental Load and Fatigue in a Steady-State Motion Visual Evoked Potential-Based Brain-Computer Interface.
    Xie J; Xu G; Luo A; Li M; Zhang S; Han C; Yan W
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28805731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DF-SSmVEP: Dual Frequency Aggregated Steady-State Motion Visual Evoked Potential Design with Bifold Canonical Correlation Analysis.
    Karimi R; Mohammadi A; Asif A; Benali H
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced System Robustness of Asynchronous BCI in Augmented Reality Using Steady-State Motion Visual Evoked Potential.
    Ravi A; Lu J; Pearce S; Jiang N
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():85-95. PubMed ID: 34990366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of SSMVEP-based EEG signals using multiplex limited penetrable horizontal visibility graph.
    Gao ZK; Guo W; Cai Q; Ma C; Zhang YB; Kurths J
    Chaos; 2019 Jul; 29(7):073119. PubMed ID: 31370406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence detection analysis based on canonical correlation for steady-state visual evoked potential brain computer interfaces.
    Cao L; Ju Z; Li J; Jian R; Jiang C
    J Neurosci Methods; 2015 Sep; 253():10-7. PubMed ID: 26014663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Idle-State Detection Algorithm for SSVEP-Based Brain-Computer Interfaces Using a Maximum Evoked Response Spatial Filter.
    Zhang D; Huang B; Wu W; Li S
    Int J Neural Syst; 2015 Nov; 25(7):1550030. PubMed ID: 26246229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SSVEP recognition using common feature analysis in brain-computer interface.
    Zhang Y; Zhou G; Jin J; Wang X; Cichocki A
    J Neurosci Methods; 2015 Apr; 244():8-15. PubMed ID: 24727656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Steady-State Visual Evoked Potential-Based Brain-Computer Interface Using a Novel Visual Stimulus with Quick Response (QR) Code Pattern.
    Siribunyaphat N; Punsawad Y
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Periodic component analysis as a spatial filter for SSVEP-based brain-computer interface.
    Kiran Kumar GR; Ramasubba Reddy M
    J Neurosci Methods; 2018 Sep; 307():164-174. PubMed ID: 29890196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of higher frequency on the classification of steady-state visual evoked potentials.
    Won DO; Hwang HJ; Dähne S; Müller KR; Lee SW
    J Neural Eng; 2016 Feb; 13(1):016014. PubMed ID: 26695712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of Checkerboard Spatial Frequencies for Steady-State Visual Evoked Potential Brain-Computer Interfaces.
    Waytowich NR; Yamani Y; Krusienski DJ
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):557-565. PubMed ID: 27542113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Can a highly accurate multi-class SSMVEP BCI induce sensory-motor rhythm in the sensorimotor area?
    Zhang X; Xu G; Ravi A; Pearce S; Jiang N
    J Neural Eng; 2021 Mar; 18(3):. PubMed ID: 32238617
    [No Abstract]   [Full Text] [Related]  

  • 19. Comparison of Modern Highly Interactive Flicker-Free Steady State Motion Visual Evoked Potentials for Practical Brain-Computer Interfaces.
    Stawicki P; Volosyak I
    Brain Sci; 2020 Sep; 10(10):. PubMed ID: 32998379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An approach for brain-controlled prostheses based on Scene Graph Steady-State Visual Evoked Potentials.
    Li R; Zhang X; Li H; Zhang L; Lu Z; Chen J
    Brain Res; 2018 Aug; 1692():142-153. PubMed ID: 29777674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.