BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 28061396)

  • 1. Effective harvesting of microalgae: Comparison of different polymeric flocculants.
    Gerchman Y; Vasker B; Tavasi M; Mishael Y; Kinel-Tahan Y; Yehoshua Y
    Bioresour Technol; 2017 Mar; 228():141-146. PubMed ID: 28061396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergistic effect and mechanisms of compound bioflocculant and AlCl3 salts on enhancing Chlorella regularis harvesting.
    Zhang C; Wang X; Wang Y; Li Y; Zhou D; Jia Y
    Appl Microbiol Biotechnol; 2016 Jun; 100(12):5653-60. PubMed ID: 27102131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Harvesting of Chlorella vulgaris Using Combined Flocculants.
    Ma X; Zheng H; Zhou W; Liu Y; Chen P; Ruan R
    Appl Biochem Biotechnol; 2016 Oct; 180(4):791-804. PubMed ID: 27206558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of ferric chloride concentration and pH to improve both cell growth and flocculation in Chlorella vulgaris cultures. Application to medium reuse in an integrated continuous culture bioprocess.
    Lecina M; Nadal G; Solà C; Prat J; Cairó JJ
    Bioresour Technol; 2016 Sep; 216():211-8. PubMed ID: 27240237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Harvesting of microalgae by flocculation with poly (γ-glutamic acid).
    Zheng H; Gao Z; Yin J; Tang X; Ji X; Huang H
    Bioresour Technol; 2012 May; 112():212-20. PubMed ID: 22425514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly charged cellulose-based nanocrystals as flocculants for harvesting Chlorella vulgaris.
    Vandamme D; Eyley S; Van den Mooter G; Muylaert K; Thielemans W
    Bioresour Technol; 2015 Oct; 194():270-5. PubMed ID: 26210139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Charge-tunable polymers as reversible and recyclable flocculants for the dewatering of microalgae.
    Morrissey KL; He C; Wong MH; Zhao X; Chapman RZ; Bender SL; Prevatt WD; Stoykovich MP
    Biotechnol Bioeng; 2015 Jan; 112(1):74-83. PubMed ID: 25060233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cationic polymers for successful flocculation of marine microalgae.
    't Lam GP; Vermuë MH; Olivieri G; van den Broek LAM; Barbosa MJ; Eppink MHM; Wijffels RH; Kleinegris DMM
    Bioresour Technol; 2014 Oct; 169():804-807. PubMed ID: 25113884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methods coagulation/flocculation and flocculation with ballast agent for effective harvesting of microalgae.
    Gorin KV; Sergeeva YE; Butylin VV; Komova AV; Pojidaev VM; Badranova GU; Shapovalova AA; Konova IA; Gotovtsev PM
    Bioresour Technol; 2015 Oct; 193():178-84. PubMed ID: 26133475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microalgae harvesting and subsequent biodiesel conversion.
    Tran DT; Le BH; Lee DJ; Chen CL; Wang HY; Chang JS
    Bioresour Technol; 2013 Jul; 140():179-86. PubMed ID: 23688670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A rapid, efficient and eco-friendly approach for simultaneous biomass harvesting and bioproducts extraction from microalgae: Dual flocculation between cationic surfactants and bio-polymer.
    Taghavijeloudar M; Yaqoubnejad P; Ahangar AK; Rezania S
    Sci Total Environ; 2023 Jan; 854():158717. PubMed ID: 36108873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effective harvesting of the microalgae Chlorella protothecoides via bioflocculation with cationic starch.
    Letelier-Gordo CO; Holdt SL; De Francisci D; Karakashev DB; Angelidaki I
    Bioresour Technol; 2014 Sep; 167():214-8. PubMed ID: 24983692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient harvesting of marine Chlorella vulgaris microalgae utilizing cationic starch nanoparticles by response surface methodology.
    Bayat Tork M; Khalilzadeh R; Kouchakzadeh H
    Bioresour Technol; 2017 Nov; 243():583-588. PubMed ID: 28704739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Harvesting freshwater Chlorella vulgaris with flocculant derived from spent brewer's yeast.
    Prochazkova G; Kastanek P; Branyik T
    Bioresour Technol; 2015 Feb; 177():28-33. PubMed ID: 25479390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microwave assisted flocculation for harvesting of Chlorella vulgaris.
    Liu W; Cui Y; Cheng P; Huo S; Ma X; Chen Q; Cobb K; Chen P; Ma J; Gao X; Ruan R
    Bioresour Technol; 2020 Oct; 314():123770. PubMed ID: 32652448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microalgae
    Zhu L; Li Z; Hiltunen E
    Biotechnol Biofuels; 2018; 11():183. PubMed ID: 29988300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flocculation properties of several microalgae and a cyanobacterium species during ferric chloride, chitosan and alkaline flocculation.
    Lama S; Muylaert K; Karki TB; Foubert I; Henderson RK; Vandamme D
    Bioresour Technol; 2016 Nov; 220():464-470. PubMed ID: 27611030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradable branched cationic starch with high C/N ratio for Chlorella vulgaris cells concentration: Regulating microalgae flocculation performance by pH.
    Huang Y; Wei C; Liao Q; Xia A; Zhu X; Zhu X
    Bioresour Technol; 2019 Mar; 276():133-139. PubMed ID: 30623867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of pH induced flocculation of marine and freshwater microalgae via central composite design.
    Akış S; Özçimen D
    Biotechnol Prog; 2019 May; 35(3):e2801. PubMed ID: 30840353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Harvesting Chlorella vulgaris by magnetic flocculation using Fe₃O₄ coating with polyaluminium chloride and polyacrylamide.
    Zhao Y; Liang W; Liu L; Li F; Fan Q; Sun X
    Bioresour Technol; 2015 Dec; 198():789-96. PubMed ID: 26454365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.