These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 28061943)

  • 21. Predictive information speeds up visual awareness in an individuation task by modulating threshold setting, not processing efficiency.
    De Loof E; Van Opstal F; Verguts T
    Vision Res; 2016 Apr; 121():104-112. PubMed ID: 26975499
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of central and peripheral cueing on perceptual and saccade performance.
    Moehler T; Fiehler K
    Vision Res; 2018 Feb; 143():26-33. PubMed ID: 29262304
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multiple levels of control in the Stroop task.
    Bugg JM; Jacoby LL; Toth JP
    Mem Cognit; 2008 Dec; 36(8):1484-94. PubMed ID: 19015507
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Control of spatial orienting: context-specific proportion cued effects in an exogenous spatial cueing task.
    Gough A; Garcia J; Torres-Quesada M; Milliken B
    Conscious Cogn; 2014 Nov; 30():220-33. PubMed ID: 25313965
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Proactive control of irrelevant task rules during cued task switching.
    Bugg JM; Braver TS
    Psychol Res; 2016 Sep; 80(5):860-76. PubMed ID: 26215433
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inefficient cognitive control in adult ADHD: evidence from trial-by-trial Stroop test and cued task switching performance.
    King JA; Colla M; Brass M; Heuser I; von Cramon D
    Behav Brain Funct; 2007 Aug; 3():42. PubMed ID: 17708762
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Attentional control in anterior cingulate cortex based on probabilistic cueing.
    Aarts E; Roelofs A
    J Cogn Neurosci; 2011 Mar; 23(3):716-27. PubMed ID: 20146601
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stop interfering: Stroop task conflict independence from informational conflict and interference.
    Kalanthroff E; Goldfarb L; Usher M; Henik A
    Q J Exp Psychol (Hove); 2013; 66(7):1356-67. PubMed ID: 23163896
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Context-specific proportion congruent effects: Compound-cue contingency learning in disguise.
    Schmidt JR; Lemercier C
    Q J Exp Psychol (Hove); 2019 May; 72(5):1119-1130. PubMed ID: 29926760
    [TBL] [Abstract][Full Text] [Related]  

  • 30. More than just channeling: The role of subcortical mechanisms in executive functions - Evidence from the Stroop task.
    Saban W; Gabay S; Kalanthroff E
    Acta Psychol (Amst); 2018 Sep; 189():36-42. PubMed ID: 28291524
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The interactive effects of listwide control, item-based control, and working memory capacity on Stroop performance.
    Hutchison KA
    J Exp Psychol Learn Mem Cogn; 2011 Jul; 37(4):851-60. PubMed ID: 21517220
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reduction of the spatial stroop effect by peripheral cueing as a function of the presence/absence of placeholders.
    Luo C; Lupiáñez J; Funes MJ; Fu X
    PLoS One; 2013; 8(7):e69456. PubMed ID: 23894485
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A temporary deficiency in self-control: Can heightened motivation overcome this effect?
    Kelly CL; Crawford TJ; Gowen E; Richardson K; Sünram-Lea SI
    Psychophysiology; 2017 May; 54(5):773-779. PubMed ID: 28111771
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transfer of learned cognitive control settings within and between tasks.
    Ileri-Tayar M; Moss C; Bugg JM
    Neurobiol Learn Mem; 2022 Dec; 196():107689. PubMed ID: 36374800
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exploring relations between task conflict and informational conflict in the Stroop task.
    Entel O; Tzelgov J; Bereby-Meyer Y; Shahar N
    Psychol Res; 2015 Nov; 79(6):913-27. PubMed ID: 25420632
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Task conflict and proactive control: A computational theory of the Stroop task.
    Kalanthroff E; Davelaar EJ; Henik A; Goldfarb L; Usher M
    Psychol Rev; 2018 Jan; 125(1):59-82. PubMed ID: 29035077
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Does Temporal Expectation Driven by Rhythmic Cues Differ From That Driven by Symbolic Cues Across the Millisecond and Second Range?
    Ren Y; Xu Z; Wu F; Ejima Y; Yang J; Takahashi S; Wu Q; Wu J
    Perception; 2019 Jun; 48(6):515-529. PubMed ID: 31046568
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A reach-to-touch investigation on the nature of reading in the Stroop task.
    Tillman G; Eidels A; Finkbeiner M
    Atten Percept Psychophys; 2016 Nov; 78(8):2547-2557. PubMed ID: 27549606
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Active inhibition of a distractor word: the distractor precue benefit in the Stroop color-naming task.
    Chao HF
    J Exp Psychol Hum Percept Perform; 2011 Jun; 37(3):799-812. PubMed ID: 21480743
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exploring longitudinal changes in implicit awareness of dementia: An investigation of the emotional Stroop effect in healthy ageing and mild dementia.
    Martyr A; Nelis SM; Morris RG; Marková IS; Roth I; Woods RT; Clare L
    J Neuropsychol; 2024 Jun; 18(2):226-238. PubMed ID: 37658549
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.