These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 28062031)

  • 1. How to Measure Load-Dependent Kinetics of Individual Motor Molecules Without a Force-Clamp.
    Sung J; Mortensen KI; Spudich JA; Flyvbjerg H
    Methods Enzymol; 2017; 582():1-29. PubMed ID: 28062031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Harmonic force spectroscopy measures load-dependent kinetics of individual human β-cardiac myosin molecules.
    Sung J; Nag S; Mortensen KI; Vestergaard CL; Sutton S; Ruppel K; Flyvbjerg H; Spudich JA
    Nat Commun; 2015 Aug; 6():7931. PubMed ID: 26239258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Versatile Quadruple-Trap Optical Tweezers for Dual DNA Experiments.
    Heller I; Laurens N; Vorselen D; Broekmans OD; Biebricher AS; King GA; Brouwer I; Wuite GJL; Peterman EJG
    Methods Mol Biol; 2017; 1486():257-272. PubMed ID: 27844431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Speed Optical Tweezers for the Study of Single Molecular Motors.
    Gardini L; Tempestini A; Pavone FS; Capitanio M
    Methods Mol Biol; 2018; 1805():151-184. PubMed ID: 29971718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Advances in Biological Single-Molecule Applications of Optical Tweezers and Fluorescence Microscopy.
    Hashemi Shabestari M; Meijering AEC; Roos WH; Wuite GJL; Peterman EJG
    Methods Enzymol; 2017; 582():85-119. PubMed ID: 28062046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-Molecule Angular Optical Trapping for Studying Transcription Under Torsion.
    Ma J; Tan C; Wang MD
    Methods Mol Biol; 2018; 1805():301-332. PubMed ID: 29971725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultra-fast force-clamp spectroscopy data on the interaction between skeletal muscle myosin and actin.
    Maffei M; Beneventi D; Canepari M; Bottinelli R; Pavone FS; Capitanio M
    Data Brief; 2019 Aug; 25():104017. PubMed ID: 31223637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implementation and Tuning of an Optical Tweezers Force-Clamp Feedback System.
    Bugiel M; Jannasch A; Schäffer E
    Methods Mol Biol; 2017; 1486():109-136. PubMed ID: 27844427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measuring the Kinetic and Mechanical Properties of Non-processive Myosins Using Optical Tweezers.
    Greenberg MJ; Shuman H; Ostap EM
    Methods Mol Biol; 2017; 1486():483-509. PubMed ID: 27844441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-Molecule Biophysical Techniques to Study Actomyosin Force Transduction.
    Takagi Y; Hundt N; Fineberg A
    Adv Exp Med Biol; 2020; 1239():85-126. PubMed ID: 32451857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-molecule dual-beam optical trap analysis of protein structure and function.
    Sung J; Sivaramakrishnan S; Dunn AR; Spudich JA
    Methods Enzymol; 2010; 475():321-75. PubMed ID: 20627164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Resolution Optical Tweezers Combined With Single-Molecule Confocal Microscopy.
    Whitley KD; Comstock MJ; Chemla YR
    Methods Enzymol; 2017; 582():137-169. PubMed ID: 28062033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissecting Mechanoenzymatic Properties of Processive Myosins with Ultrafast Force-Clamp Spectroscopy.
    Gardini L; Kashchuk AV; Pavone FS; Capitanio M
    J Vis Exp; 2021 Jul; (173):. PubMed ID: 34279513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Speed Optical Traps Address Dynamics of Processive and Non-Processive Molecular Motors.
    Gardini L; Woody MS; Kashchuk AV; Goldman YE; Ostap EM; Capitanio M
    Methods Mol Biol; 2022; 2478():513-557. PubMed ID: 36063333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interrogating biology with force: single molecule high-resolution measurements with optical tweezers.
    Capitanio M; Pavone FS
    Biophys J; 2013 Sep; 105(6):1293-303. PubMed ID: 24047980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How Myosin 5 Walks Deduced from Single-Molecule Biophysical Approaches.
    Sellers JR; Takagi Y
    Adv Exp Med Biol; 2020; 1239():153-181. PubMed ID: 32451859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of myosin-driven skeletal muscle contraction: I. Steady-state force generation.
    Lan G; Sun SX
    Biophys J; 2005 Jun; 88(6):4107-17. PubMed ID: 15778440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Introduction to Optical Tweezers: Background, System Designs, and Commercial Solutions.
    van Mameren J; Wuite GJL; Heller I
    Methods Mol Biol; 2018; 1665():3-23. PubMed ID: 28940061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrating Optical Tweezers, DNA Tightropes, and Single-Molecule Fluorescence Imaging: Pitfalls and Traps.
    Wang J; Barnett JT; Pollard MR; Kad NM
    Methods Enzymol; 2017; 582():171-192. PubMed ID: 28062034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inherent force-dependent properties of β-cardiac myosin contribute to the force-velocity relationship of cardiac muscle.
    Greenberg MJ; Shuman H; Ostap EM
    Biophys J; 2014 Dec; 107(12):L41-L44. PubMed ID: 25517169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.