BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 28062034)

  • 1. Integrating Optical Tweezers, DNA Tightropes, and Single-Molecule Fluorescence Imaging: Pitfalls and Traps.
    Wang J; Barnett JT; Pollard MR; Kad NM
    Methods Enzymol; 2017; 582():171-192. PubMed ID: 28062034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA-Protein Interactions Studied Directly Using Single Molecule Fluorescence Imaging of Quantum Dot Tagged Proteins Moving on DNA Tightropes.
    Springall L; Inchingolo AV; Kad NM
    Methods Mol Biol; 2016; 1431():141-50. PubMed ID: 27283307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Advances in Biological Single-Molecule Applications of Optical Tweezers and Fluorescence Microscopy.
    Hashemi Shabestari M; Meijering AEC; Roos WH; Wuite GJL; Peterman EJG
    Methods Enzymol; 2017; 582():85-119. PubMed ID: 28062046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Directly interrogating single quantum dot labelled UvrA2 molecules on DNA tightropes using an optically trapped nanoprobe.
    Simons M; Pollard MR; Hughes CD; Ward AD; Van Houten B; Towrie M; Botchway SW; Parker AW; Kad NM
    Sci Rep; 2015 Dec; 5():18486. PubMed ID: 26691010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-Molecule Protein Folding Experiments Using High-Precision Optical Tweezers.
    Jiao J; Rebane AA; Ma L; Zhang Y
    Methods Mol Biol; 2017; 1486():357-390. PubMed ID: 27844436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Resolution Optical Tweezers Combined With Single-Molecule Confocal Microscopy.
    Whitley KD; Comstock MJ; Chemla YR
    Methods Enzymol; 2017; 582():137-169. PubMed ID: 28062033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Versatile Quadruple-Trap Optical Tweezers for Dual DNA Experiments.
    Heller I; Laurens N; Vorselen D; Broekmans OD; Biebricher AS; King GA; Brouwer I; Wuite GJL; Peterman EJG
    Methods Mol Biol; 2017; 1486():257-272. PubMed ID: 27844431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlated Single-Molecule Magnetic Tweezers and Fluorescence Measurements of DNA-Enzyme Interactions.
    Madariaga-Marcos J; Aldag P; Kauert DJ; Seidel R
    Methods Mol Biol; 2024; 2694():421-449. PubMed ID: 37824016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining optical trapping, fluorescence microscopy and micro-fluidics for single molecule studies of DNA-protein interactions.
    Candelli A; Wuite GJ; Peterman EJ
    Phys Chem Chem Phys; 2011 Apr; 13(16):7263-72. PubMed ID: 21416086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Resolution "Fleezers": Dual-Trap Optical Tweezers Combined with Single-Molecule Fluorescence Detection.
    Whitley KD; Comstock MJ; Chemla YR
    Methods Mol Biol; 2017; 1486():183-256. PubMed ID: 27844430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Resolution Optical Tweezers Combined with Multicolor Single-Molecule Microscopy.
    Yadav R; Senanayake KB; Comstock MJ
    Methods Mol Biol; 2022; 2478():141-240. PubMed ID: 36063322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput, high-force probing of DNA-protein interactions with magnetic tweezers.
    Berghuis BA; Köber M; van Laar T; Dekker NH
    Methods; 2016 Aug; 105():90-8. PubMed ID: 27038745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissecting elastic heterogeneity along DNA molecules coated partly with Rad51 using concurrent fluorescence microscopy and optical tweezers.
    Mameren Jv; Modesti M; Kanaar R; Wyman C; Wuite GJ; Peterman EJ
    Biophys J; 2006 Oct; 91(8):L78-80. PubMed ID: 16920830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct Visualization of Helicase Dynamics Using Fluorescence Localization and Optical Trapping.
    Lin CT; Ha T
    Methods Enzymol; 2017; 582():121-136. PubMed ID: 28062032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid 3D fluorescence imaging of individual optically trapped living immune cells.
    Wolfson D; Steck M; Persson M; McNerney G; Popovich A; Goksör M; Huser T
    J Biophotonics; 2015 Mar; 8(3):208-16. PubMed ID: 24420444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single molecule techniques in DNA repair: a primer.
    Hughes CD; Simons M; Mackenzie CE; Van Houten B; Kad NM
    DNA Repair (Amst); 2014 Aug; 20():2-13. PubMed ID: 24819596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tracking of single quantum dot labeled EcoRV sliding along DNA manipulated by double optical tweezers.
    Biebricher A; Wende W; Escudé C; Pingoud A; Desbiolles P
    Biophys J; 2009 Apr; 96(8):L50-2. PubMed ID: 19383444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transverse Magnetic Tweezers Allowing Coincident Epifluorescence Microscopy on Horizontally Extended DNA.
    Cross SJ; Brown CE; Baumann CG
    Methods Mol Biol; 2016; 1431():73-90. PubMed ID: 27283303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence microscopy for visualizing single-molecule protein dynamics.
    Yokota H
    Biochim Biophys Acta Gen Subj; 2020 Feb; 1864(2):129362. PubMed ID: 31078674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extended depth of field for single biomolecule optical imaging-force spectroscopy.
    Chang M; Oh J; Kim Y; Hohng S; Lee JB
    Opt Express; 2017 Dec; 25(25):32189-32197. PubMed ID: 29245882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.