BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 28062037)

  • 1. Single-Molecule Insight Into Target Recognition by CRISPR-Cas Complexes.
    Rutkauskas M; Krivoy A; Szczelkun MD; Rouillon C; Seidel R
    Methods Enzymol; 2017; 582():239-273. PubMed ID: 28062037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes.
    Szczelkun MD; Tikhomirova MS; Sinkunas T; Gasiunas G; Karvelis T; Pschera P; Siksnys V; Seidel R
    Proc Natl Acad Sci U S A; 2014 Jul; 111(27):9798-803. PubMed ID: 24912165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstitution and biochemical characterization of ribonucleoprotein complexes in Type I-E CRISPR-Cas systems.
    Xiao Y; Ke A
    Methods Enzymol; 2019; 616():27-41. PubMed ID: 30691647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis for promiscuous PAM recognition in type I-E Cascade from E. coli.
    Hayes RP; Xiao Y; Ding F; van Erp PB; Rajashankar K; Bailey S; Wiedenheft B; Ke A
    Nature; 2016 Feb; 530(7591):499-503. PubMed ID: 26863189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interference.
    Hochstrasser ML; Taylor DW; Bhat P; Guegler CK; Sternberg SH; Nogales E; Doudna JA
    Proc Natl Acad Sci U S A; 2014 May; 111(18):6618-23. PubMed ID: 24748111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA interference is controlled by R-loop length in a type I-F1 CRISPR-Cas system.
    Tuminauskaite D; Norkunaite D; Fiodorovaite M; Tumas S; Songailiene I; Tamulaitiene G; Sinkunas T
    BMC Biol; 2020 Jun; 18(1):65. PubMed ID: 32539804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Directional R-Loop Formation by the CRISPR-Cas Surveillance Complex Cascade Provides Efficient Off-Target Site Rejection.
    Rutkauskas M; Sinkunas T; Songailiene I; Tikhomirova MS; Siksnys V; Seidel R
    Cell Rep; 2015 Mar; 10(9):1534-1543. PubMed ID: 25753419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cas9 interrogates DNA in discrete steps modulated by mismatches and supercoiling.
    Ivanov IE; Wright AV; Cofsky JC; Aris KDP; Doudna JA; Bryant Z
    Proc Natl Acad Sci U S A; 2020 Mar; 117(11):5853-5860. PubMed ID: 32123105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The energy landscape for R-loop formation by the CRISPR-Cas Cascade complex.
    Kauert DJ; Madariaga-Marcos J; Rutkauskas M; Wulfken A; Songailiene I; Sinkunas T; Siksnys V; Seidel R
    Nat Struct Mol Biol; 2023 Jul; 30(7):1040-1047. PubMed ID: 37415009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9.
    Sternberg SH; Redding S; Jinek M; Greene EC; Doudna JA
    Nature; 2014 Mar; 507(7490):62-7. PubMed ID: 24476820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular insights into DNA interference by CRISPR-associated nuclease-helicase Cas3.
    Gong B; Shin M; Sun J; Jung CH; Bolt EL; van der Oost J; Kim JS
    Proc Natl Acad Sci U S A; 2014 Nov; 111(46):16359-64. PubMed ID: 25368186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Site-Specific Labeling Reveals Cas9 Induces Partial Unwinding Without RNA/DNA Pairing in Sequences Distal to the PAM.
    Li Y; Liu Y; Singh J; Tangprasertchai NS; Trivedi R; Fang Y; Qin PZ
    CRISPR J; 2022 Apr; 5(2):341-352. PubMed ID: 35352981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems.
    Fonfara I; Le Rhun A; Chylinski K; Makarova KS; Lécrivain AL; Bzdrenga J; Koonin EV; Charpentier E
    Nucleic Acids Res; 2014 Feb; 42(4):2577-90. PubMed ID: 24270795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure Basis for Directional R-loop Formation and Substrate Handover Mechanisms in Type I CRISPR-Cas System.
    Xiao Y; Luo M; Hayes RP; Kim J; Ng S; Ding F; Liao M; Ke A
    Cell; 2017 Jun; 170(1):48-60.e11. PubMed ID: 28666122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural Basis for the Altered PAM Recognition by Engineered CRISPR-Cpf1.
    Nishimasu H; Yamano T; Gao L; Zhang F; Ishitani R; Nureki O
    Mol Cell; 2017 Jul; 67(1):139-147.e2. PubMed ID: 28595896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PAM identification by CRISPR-Cas effector complexes: diversified mechanisms and structures.
    Gleditzsch D; Pausch P; Müller-Esparza H; Özcan A; Guo X; Bange G; Randau L
    RNA Biol; 2019 Apr; 16(4):504-517. PubMed ID: 30109815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic determinants of PAM-dependent DNA targeting and pre-crRNA processing in Sulfolobus islandicus.
    Peng W; Li H; Hallstrøm S; Peng N; Liang YX; She Q
    RNA Biol; 2013 May; 10(5):738-48. PubMed ID: 23392249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decision-Making in Cascade Complexes Harboring crRNAs of Altered Length.
    Songailiene I; Rutkauskas M; Sinkunas T; Manakova E; Wittig S; Schmidt C; Siksnys V; Seidel R
    Cell Rep; 2019 Sep; 28(12):3157-3166.e4. PubMed ID: 31533038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mg
    Son H; Park J; Hwang I; Jung Y; Bae S; Lee S
    Proc Natl Acad Sci U S A; 2021 Dec; 118(49):. PubMed ID: 34853172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic insights into the R-loop formation and cleavage in CRISPR-Cas12i1.
    Zhang B; Luo D; Li Y; Perčulija V; Chen J; Lin J; Ye Y; Ouyang S
    Nat Commun; 2021 Jun; 12(1):3476. PubMed ID: 34108490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.