BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

918 related articles for article (PubMed ID: 28062244)

  • 1. Identification of time-varying neural dynamics from spike train data using multiwavelet basis functions.
    Xu S; Li Y; Guo Q; Yang XF; Chan RHM
    J Neurosci Methods; 2017 Feb; 278():46-56. PubMed ID: 28062244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-Varying System Identification Using an Ultra-Orthogonal Forward Regression and Multiwavelet Basis Functions With Applications to EEG.
    Li Y; Cui WG; Guo YZ; Huang T; Yang XF; Wei HL
    IEEE Trans Neural Netw Learn Syst; 2018 Jul; 29(7):2960-2972. PubMed ID: 28650829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of time-varying neural dynamics from spiking activities using Chebyshev polynomials.
    Song Xu ; Yang Li ; Xudong Wang ; Chan RH
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1591-1594. PubMed ID: 28268632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. System identification of point-process neural systems using probability based Volterra kernels.
    Sandler RA; Deadwyler SA; Hampson RE; Song D; Berger TW; Marmarelis VZ
    J Neurosci Methods; 2015 Jan; 240():179-92. PubMed ID: 25479231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive inverse control of neural spatiotemporal spike patterns with a reproducing kernel Hilbert space (RKHS) framework.
    Li L; Park IM; Brockmeier A; Chen B; Seth S; Francis JT; Sanchez JC; Príncipe JC
    IEEE Trans Neural Syst Rehabil Eng; 2013 Jul; 21(4):532-43. PubMed ID: 22868633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear dynamic modeling of spike train transformations for hippocampal-cortical prostheses.
    Song D; Chan RH; Marmarelis VZ; Hampson RE; Deadwyler SA; Berger TW
    IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):1053-66. PubMed ID: 17554824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. State-space analysis of time-varying higher-order spike correlation for multiple neural spike train data.
    Shimazaki H; Amari S; Brown EN; Grün S
    PLoS Comput Biol; 2012; 8(3):e1002385. PubMed ID: 22412358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An analysis of neural receptive field plasticity by point process adaptive filtering.
    Brown EN; Nguyen DP; Frank LM; Wilson MA; Solo V
    Proc Natl Acad Sci U S A; 2001 Oct; 98(21):12261-6. PubMed ID: 11593043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequential Monte Carlo point-process estimation of kinematics from neural spiking activity for brain-machine interfaces.
    Wang Y; Paiva AR; Príncipe JC; Sanchez JC
    Neural Comput; 2009 Oct; 21(10):2894-930. PubMed ID: 19548797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Total spiking probability edges: A cross-correlation based method for effective connectivity estimation of cortical spiking neurons.
    De Blasi S; Ciba M; Bahmer A; Thielemann C
    J Neurosci Methods; 2019 Jan; 312():169-181. PubMed ID: 30500352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laguerre-Volterra identification of spike-timing-dependent plasticity from spiking activity: a simulation study.
    Robinson BS; Song D; Berger TW
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5578-81. PubMed ID: 24111001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of functional synaptic plasticity from spiking activities using nonlinear dynamical modeling.
    Song D; Chan RH; Robinson BS; Marmarelis VZ; Opris I; Hampson RE; Deadwyler SA; Berger TW
    J Neurosci Methods; 2015 Apr; 244():123-35. PubMed ID: 25280984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The time-rescaling theorem and its application to neural spike train data analysis.
    Brown EN; Barbieri R; Ventura V; Kass RE; Frank LM
    Neural Comput; 2002 Feb; 14(2):325-46. PubMed ID: 11802915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimating nonstationary inputs from a single spike train based on a neuron model with adaptation.
    Kim H; Shinomoto S
    Math Biosci Eng; 2014 Feb; 11(1):49-62. PubMed ID: 24245682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A reproducing kernel Hilbert space framework for spike train signal processing.
    Paiva AR; Park I; Príncipe JC
    Neural Comput; 2009 Feb; 21(2):424-49. PubMed ID: 19431265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating nonstationary input signals from a single neuronal spike train.
    Kim H; Shinomoto S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051903. PubMed ID: 23214810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust spike-train learning in spike-event based weight update.
    Shrestha SB; Song Q
    Neural Netw; 2017 Dec; 96():33-46. PubMed ID: 28957730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiscale analysis of neural spike trains.
    Ramezan R; Marriott P; Chenouri S
    Stat Med; 2014 Jan; 33(2):238-56. PubMed ID: 23996238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of neurons in the cat lateral geniculate nucleus: in vivo electrophysiology and computational modeling.
    Mukherjee P; Kaplan E
    J Neurophysiol; 1995 Sep; 74(3):1222-43. PubMed ID: 7500146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of neuronal firing rate using Bayesian Adaptive Kernel Smoother (BAKS).
    Ahmadi N; Constandinou TG; Bouganis CS
    PLoS One; 2018; 13(11):e0206794. PubMed ID: 30462665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 46.