These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

918 related articles for article (PubMed ID: 28062244)

  • 1. Identification of time-varying neural dynamics from spike train data using multiwavelet basis functions.
    Xu S; Li Y; Guo Q; Yang XF; Chan RHM
    J Neurosci Methods; 2017 Feb; 278():46-56. PubMed ID: 28062244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-Varying System Identification Using an Ultra-Orthogonal Forward Regression and Multiwavelet Basis Functions With Applications to EEG.
    Li Y; Cui WG; Guo YZ; Huang T; Yang XF; Wei HL
    IEEE Trans Neural Netw Learn Syst; 2018 Jul; 29(7):2960-2972. PubMed ID: 28650829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of time-varying neural dynamics from spiking activities using Chebyshev polynomials.
    Song Xu ; Yang Li ; Xudong Wang ; Chan RH
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1591-1594. PubMed ID: 28268632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. System identification of point-process neural systems using probability based Volterra kernels.
    Sandler RA; Deadwyler SA; Hampson RE; Song D; Berger TW; Marmarelis VZ
    J Neurosci Methods; 2015 Jan; 240():179-92. PubMed ID: 25479231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive inverse control of neural spatiotemporal spike patterns with a reproducing kernel Hilbert space (RKHS) framework.
    Li L; Park IM; Brockmeier A; Chen B; Seth S; Francis JT; Sanchez JC; Príncipe JC
    IEEE Trans Neural Syst Rehabil Eng; 2013 Jul; 21(4):532-43. PubMed ID: 22868633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear dynamic modeling of spike train transformations for hippocampal-cortical prostheses.
    Song D; Chan RH; Marmarelis VZ; Hampson RE; Deadwyler SA; Berger TW
    IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):1053-66. PubMed ID: 17554824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. State-space analysis of time-varying higher-order spike correlation for multiple neural spike train data.
    Shimazaki H; Amari S; Brown EN; Grün S
    PLoS Comput Biol; 2012; 8(3):e1002385. PubMed ID: 22412358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An analysis of neural receptive field plasticity by point process adaptive filtering.
    Brown EN; Nguyen DP; Frank LM; Wilson MA; Solo V
    Proc Natl Acad Sci U S A; 2001 Oct; 98(21):12261-6. PubMed ID: 11593043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequential Monte Carlo point-process estimation of kinematics from neural spiking activity for brain-machine interfaces.
    Wang Y; Paiva AR; Príncipe JC; Sanchez JC
    Neural Comput; 2009 Oct; 21(10):2894-930. PubMed ID: 19548797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Total spiking probability edges: A cross-correlation based method for effective connectivity estimation of cortical spiking neurons.
    De Blasi S; Ciba M; Bahmer A; Thielemann C
    J Neurosci Methods; 2019 Jan; 312():169-181. PubMed ID: 30500352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laguerre-Volterra identification of spike-timing-dependent plasticity from spiking activity: a simulation study.
    Robinson BS; Song D; Berger TW
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5578-81. PubMed ID: 24111001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of functional synaptic plasticity from spiking activities using nonlinear dynamical modeling.
    Song D; Chan RH; Robinson BS; Marmarelis VZ; Opris I; Hampson RE; Deadwyler SA; Berger TW
    J Neurosci Methods; 2015 Apr; 244():123-35. PubMed ID: 25280984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The time-rescaling theorem and its application to neural spike train data analysis.
    Brown EN; Barbieri R; Ventura V; Kass RE; Frank LM
    Neural Comput; 2002 Feb; 14(2):325-46. PubMed ID: 11802915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimating nonstationary inputs from a single spike train based on a neuron model with adaptation.
    Kim H; Shinomoto S
    Math Biosci Eng; 2014 Feb; 11(1):49-62. PubMed ID: 24245682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A reproducing kernel Hilbert space framework for spike train signal processing.
    Paiva AR; Park I; Príncipe JC
    Neural Comput; 2009 Feb; 21(2):424-49. PubMed ID: 19431265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating nonstationary input signals from a single neuronal spike train.
    Kim H; Shinomoto S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051903. PubMed ID: 23214810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust spike-train learning in spike-event based weight update.
    Shrestha SB; Song Q
    Neural Netw; 2017 Dec; 96():33-46. PubMed ID: 28957730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiscale analysis of neural spike trains.
    Ramezan R; Marriott P; Chenouri S
    Stat Med; 2014 Jan; 33(2):238-56. PubMed ID: 23996238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of neurons in the cat lateral geniculate nucleus: in vivo electrophysiology and computational modeling.
    Mukherjee P; Kaplan E
    J Neurophysiol; 1995 Sep; 74(3):1222-43. PubMed ID: 7500146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of neuronal firing rate using Bayesian Adaptive Kernel Smoother (BAKS).
    Ahmadi N; Constandinou TG; Bouganis CS
    PLoS One; 2018; 13(11):e0206794. PubMed ID: 30462665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 46.