These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 2806229)

  • 41. The influence of step and ramp type protocols on the attainment of peak physiological responses during arm crank ergometry.
    Smith PM; Doherty M; Drake D; Price MJ
    Int J Sports Med; 2004 Nov; 25(8):616-21. PubMed ID: 15532006
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Assessment of maximal aerobic power and critical power in a single 90-s isokinetic all-out cycling test.
    Brickley G; Dekerle J; Hammond AJ; Pringle J; Carter H
    Int J Sports Med; 2007 May; 28(5):414-9. PubMed ID: 17111310
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A comparison of time to exhaustion at VO2 max in élite cyclists, kayak paddlers, swimmers and runners.
    Billat V; Faina M; Sardella F; Marini C; Fanton F; Lupo S; Faccini P; de Angelis M; Koralsztein JP; Dalmonte A
    Ergonomics; 1996 Feb; 39(2):267-77. PubMed ID: 8851531
    [TBL] [Abstract][Full Text] [Related]  

  • 44. MyHC II content in the vastus lateralis m. quadricipitis femoris is positively correlated with the magnitude of the non-linear increase in the VO2 / power output relationship in humans.
    Zoladz JA; Duda K; Karasinski J; Majerczak J; Kolodziejski L; Korzeniewski B
    J Physiol Pharmacol; 2002 Dec; 53(4 Pt 2):805-21. PubMed ID: 12510865
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A new single work bout test to estimate critical power and anaerobic work capacity.
    Bergstrom HC; Housh TJ; Zuniga JM; Camic CL; Traylor DA; Schmidt RJ; Johnson GO
    J Strength Cond Res; 2012 Mar; 26(3):656-63. PubMed ID: 22310519
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The effect of glycogen depletion and supercompensation on the physical working capacity at the fatigue threshold.
    Housh TJ; deVries HA; Johnson GO; Evans SA; Tharp GD; Housh DJ; Hughes RJ
    Eur J Appl Physiol Occup Physiol; 1990; 60(5):391-4. PubMed ID: 2369912
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The relationship between critical power and the onset of blood lactate accumulation.
    Housh TJ; Devries HA; Housh DJ; Tichy MW; Smyth KD; Tichy AM
    J Sports Med Phys Fitness; 1991 Mar; 31(1):31-6. PubMed ID: 1861480
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The 3-min all-out test is valid for determining critical power but not anaerobic work capacity in tethered running.
    Gama MCT; Dos Reis IGM; Sousa FAB; Gobatto CA
    PLoS One; 2018; 13(2):e0192552. PubMed ID: 29444141
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Open-ended time durations for stationary start intense cycle ergometer exercise testing.
    Klopp DM; Vargas NT; Robergs RA
    Appl Physiol Nutr Metab; 2013 May; 38(5):574-80. PubMed ID: 23668767
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The Effect of Skinfold on the Assessment of the Mean Power Frequency at the Fatigue Threshold.
    Baniqued AN; Zuniga JM; Strunc TC; Keenan KM; Boken AK; Anderson JJ
    Int J Exerc Sci; 2016; 9(3):376-383. PubMed ID: 27766128
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Application of a new ergometer to develop a laboratory test for work capacity; with further application to comparisons of ten-year children in London and Sydney.
    COTTON FS
    Br J Prev Soc Med; 1955 Oct; 9(4):169-78. PubMed ID: 13269747
    [No Abstract]   [Full Text] [Related]  

  • 52. The critical power concept. A review.
    Hill DW
    Sports Med; 1993 Oct; 16(4):237-54. PubMed ID: 8248682
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Critical power as a measure of physical work capacity and anaerobic threshold.
    Moritani T; Nagata A; deVries HA; Muro M
    Ergonomics; 1981 May; 24(5):339-50. PubMed ID: 7262059
    [No Abstract]   [Full Text] [Related]  

  • 54. The 'Critical Power' Concept: Applications to Sports Performance with a Focus on Intermittent High-Intensity Exercise.
    Jones AM; Vanhatalo A
    Sports Med; 2017 Mar; 47(Suppl 1):65-78. PubMed ID: 28332113
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Metabolic and respiratory profile of the upper limit for prolonged exercise in man.
    Poole DC; Ward SA; Gardner GW; Whipp BJ
    Ergonomics; 1988 Sep; 31(9):1265-79. PubMed ID: 3191904
    [No Abstract]   [Full Text] [Related]  

  • 56. Testing the predictive capacity of a muscle fatigue model on electrically stimulated adductor pollicis.
    Vonderscher M; Bowen M; Samozino P; Morel B
    Eur J Appl Physiol; 2024 Jul; ():. PubMed ID: 39052043
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Modelling human endurance: power laws vs critical power.
    Drake JP; Finke A; Ferguson RA
    Eur J Appl Physiol; 2024 Feb; 124(2):507-526. PubMed ID: 37563307
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sustainability and perceptual responses during handgrip holds to failure at two fatigue thresholds.
    Kwak M; Succi PJ; Benitez B; Bergstrom HC
    Eur J Appl Physiol; 2023 Nov; 123(11):2563-2573. PubMed ID: 37330924
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A critical review of critical power.
    Dotan R
    Eur J Appl Physiol; 2022 Jul; 122(7):1559-1588. PubMed ID: 35303159
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of Mathematical Modeling and Fitting Procedures on the Assessment of Critical Speed and Its Relationship With Aerobic Fitness Parameters.
    Patoz A; Pedrani N; Spicher R; Berchtold A; Borrani F; Malatesta D
    Front Physiol; 2021; 12():613066. PubMed ID: 34135766
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.