BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 28062449)

  • 1. Context-sensitive network-based disease genetics prediction and its implications in drug discovery.
    Chen Y; Xu R
    Bioinformatics; 2017 Apr; 33(7):1031-1039. PubMed ID: 28062449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Drug-Side Effect Context-Sensitive Network approach for drug target prediction.
    Zhou M; Chen Y; Xu R
    Bioinformatics; 2019 Jun; 35(12):2100-2107. PubMed ID: 30428013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenome-driven disease genetics prediction toward drug discovery.
    Chen Y; Li L; Zhang GQ; Xu R
    Bioinformatics; 2015 Jun; 31(12):i276-83. PubMed ID: 26072493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenome-based gene discovery provides information about Parkinson's disease drug targets.
    Chen Y; Xu R
    BMC Genomics; 2016 Aug; 17 Suppl 5(Suppl 5):493. PubMed ID: 27586503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining phenome-driven drug-target interaction prediction with patients' electronic health records-based clinical corroboration toward drug discovery.
    Zhou M; Zheng C; Xu R
    Bioinformatics; 2020 Jul; 36(Suppl_1):i436-i444. PubMed ID: 32657406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene gravity-like algorithm for disease gene prediction based on phenotype-specific network.
    Lin L; Yang T; Fang L; Yang J; Yang F; Zhao J
    BMC Syst Biol; 2017 Dec; 11(1):121. PubMed ID: 29212543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inferring disease and gene set associations with rank coherence in networks.
    Hwang T; Zhang W; Xie M; Liu J; Kuang R
    Bioinformatics; 2011 Oct; 27(19):2692-9. PubMed ID: 21824970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of chemical space networks on the basis of Tversky similarity.
    Wu M; Vogt M; Maggiora GM; Bajorath J
    J Comput Aided Mol Des; 2016 Jan; 30(1):1-12. PubMed ID: 26695392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Network-based ranking methods for prediction of novel disease associated microRNAs.
    Le DH
    Comput Biol Chem; 2015 Oct; 58():139-48. PubMed ID: 26231308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Network-based gene prediction for Plasmodium falciparum malaria towards genetics-based drug discovery.
    Chen Y; Xu R
    BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S9. PubMed ID: 26099491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prioritizing disease genes with an improved dual label propagation framework.
    Zhang Y; Liu J; Liu X; Fan X; Hong Y; Wang Y; Huang Y; Xie M
    BMC Bioinformatics; 2018 Feb; 19(1):47. PubMed ID: 29422030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Random walks on mutual microRNA-target gene interaction network improve the prediction of disease-associated microRNAs.
    Le DH; Verbeke L; Son LH; Chu DT; Pham VH
    BMC Bioinformatics; 2017 Nov; 18(1):479. PubMed ID: 29137601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Network-based Phenome-Genome Association Prediction by Bi-Random Walk.
    Xie M; Xu Y; Zhang Y; Hwang T; Kuang R
    PLoS One; 2015; 10(5):e0125138. PubMed ID: 25933025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disease comorbidity-guided drug repositioning: a case study in schizophrenia.
    Wang Q; Xu R
    AMIA Annu Symp Proc; 2018; 2018():1300-1309. PubMed ID: 30815174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constructing an integrated gene similarity network for the identification of disease genes.
    Tian Z; Guo M; Wang C; Xing L; Wang L; Zhang Y
    J Biomed Semantics; 2017 Sep; 8(Suppl 1):32. PubMed ID: 29297379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of chemical space networks using a Tanimoto similarity variant based upon maximum common substructures.
    Zhang B; Vogt M; Maggiora GM; Bajorath J
    J Comput Aided Mol Des; 2015 Oct; 29(10):937-50. PubMed ID: 26419860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lessons learned from the design of chemical space networks and opportunities for new applications.
    Vogt M; Stumpfe D; Maggiora GM; Bajorath J
    J Comput Aided Mol Des; 2016 Mar; 30(3):191-208. PubMed ID: 26945865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining Human Disease Genetics and Mouse Model Phenotypes towards Drug Repositioning for Parkinson's disease.
    Chen Y; Cai X; Xu R
    AMIA Annu Symp Proc; 2015; 2015():1851-60. PubMed ID: 26958284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards prediction and prioritization of disease genes by the modularity of human phenome-genome assembled network.
    Jiang JQ; Dress AW; Chen M
    J Integr Bioinform; 2010 Nov; 7(2):. PubMed ID: 21098881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laplacian normalization and random walk on heterogeneous networks for disease-gene prioritization.
    Zhao ZQ; Han GS; Yu ZG; Li J
    Comput Biol Chem; 2015 Aug; 57():21-8. PubMed ID: 25736609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.