These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 28063086)

  • 41. Differences in PAH desorption and sediment organic matter composition between non-vegetated and recently vegetated fuel-oiled sediments.
    Nichols EG; Musella J
    Int J Phytoremediation; 2009 Jul; 11(5):463-78. PubMed ID: 19810349
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The role of organic matter and clay content in sediments for bioavailability of pyrene.
    Spasojević J; Maletić S; Rončević S; Grgić M; Krčmar D; Varga N; Dalmacija B
    Water Sci Technol; 2018 Jan; 77(1-2):439-447. PubMed ID: 29377828
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electrophoretic deposition of multi-walled carbon nanotube on a stainless steel electrode for use in sediment microbial fuel cells.
    Song TS; Peng-Xiao ; Wu XY; Zhou CC
    Appl Biochem Biotechnol; 2013 Jul; 170(5):1241-50. PubMed ID: 23657903
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Chemical speciation of polycyclic aromatic hydrocarbons in sediments: partitioning and extraction of humic substances.
    Orecchio S; Mannino MR
    Mar Pollut Bull; 2010 Aug; 60(8):1175-81. PubMed ID: 20472256
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Interaction of phenanthrene and its primary metabolite (1-hydroxy-2-naphthoic acid) with estuarine sediments and humic fractions.
    Parikh SJ; Chorover J; Burgos WD
    J Contam Hydrol; 2004 Aug; 72(1-4):1-22. PubMed ID: 15240164
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Removal effect of enrofloxacin from mariculture sediments by bioelectrochemical system and analysis of microbial community structure.
    Ding N; Jin C; Zhao N; Zhao Y; Guo L; Gao M; She Z; Ji J
    Environ Pollut; 2022 Oct; 311():119641. PubMed ID: 35787425
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Lead from hunting activities and its potential environmental threat to wildlife in a protected wetland in Yucatan, Mexico.
    Arcega-Cabrera F; Noreña-Barroso E; Oceguera-Vargas I
    Ecotoxicol Environ Saf; 2014 Feb; 100():251-7. PubMed ID: 24287011
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pollutant removal and bioelectricity generation from urban river sediment using a macrophyte cathode sediment microbial fuel cell (mSMFC).
    Kabutey FT; Ding J; Zhao Q; Antwi P; Quashie FK; Tankapa V; Zhang W
    Bioelectrochemistry; 2019 Aug; 128():241-251. PubMed ID: 31035233
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Advances and prospects on the aquatic plant coupled with sediment microbial fuel cell system.
    Li B; Xu D; Feng L; Liu Y; Zhang L
    Environ Pollut; 2022 Mar; 297():118771. PubMed ID: 35007677
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Outlook for benefits of sediment microbial fuel cells with two bio-electrodes.
    De Schamphelaire L; Rabaey K; Boeckx P; Boon N; Verstraete W
    Microb Biotechnol; 2008 Nov; 1(6):446-62. PubMed ID: 21261866
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sources and distribution of polycyclic aromatic hydrocarbons (PAHs) and organic matter in surface sediments of an estuary under petroleum activity influence, Todos os Santos Bay, Brazil.
    Nascimento RA; de Almeida M; Escobar NCF; Ferreira SLC; Mortatti J; Queiroz AFS
    Mar Pollut Bull; 2017 Jun; 119(2):223-230. PubMed ID: 28454763
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Turnover of lake sediments treated with sediment microbial fuel cells: a long-term study in a eutrophic lake.
    Lu X; von Haxthausen KA; Brock AL; Trapp S
    Sci Total Environ; 2021 Nov; 796():148880. PubMed ID: 34271375
    [TBL] [Abstract][Full Text] [Related]  

  • 53. PAHs distribution in sediments associated with gas hydrate and oil seepage from the Gulf of Mexico.
    Wang C; Sun H; Chang Y; Song Z; Qin X
    Mar Pollut Bull; 2011 Dec; 62(12):2714-23. PubMed ID: 21982427
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Distribution of organic pollutants and natural organic matter in urban storm water sediments as a function of grain size.
    Badin AL; Faure P; Bedell JP; Delolme C
    Sci Total Environ; 2008 Sep; 403(1-3):178-87. PubMed ID: 18573517
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Construction and operation of freshwater sediment microbial fuel cell for electricity generation.
    Song TS; Yan ZS; Zhao ZW; Jiang HL
    Bioprocess Biosyst Eng; 2011 Jun; 34(5):621-7. PubMed ID: 21221652
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Realignment of phosphorus in lake sediment induced by sediment microbial fuel cells (SMFC).
    Wang X; Zhi Y; Chen Y; Shen N; Wang G; Yan Y
    Chemosphere; 2022 Mar; 291(Pt 3):132927. PubMed ID: 34793847
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sediment microbial fuel cell coupled floating treatment wetland for enhancing non-reactive phosphorus removal.
    Shen S; Xie L; Wan R; Li X; Lu X; Dai H
    Chemosphere; 2024 Jun; 358():142142. PubMed ID: 38677619
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Organic matter in sediment layers of an acidic mining lake as assessed by lipid analysis. Part II: Neutral lipids.
    Poerschmann J; Koschorreck M; Górecki T
    Sci Total Environ; 2017 Feb; 578():219-227. PubMed ID: 26848013
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Anaerobic degradation of five polycyclic aromatic hydrocarbons from river sediment in Taiwan.
    Yuan SY; Chang BV
    J Environ Sci Health B; 2007 Jan; 42(1):63-9. PubMed ID: 17162569
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Organic matter composition, BaP biodegradation and microbial communities at sites near and far from the bioanode in a soil microbial fuel cell.
    Liang Y; Ji M; Zhai H; Zhao J
    Sci Total Environ; 2021 Jun; 772():144919. PubMed ID: 33578157
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.