These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 28063436)

  • 21. Support Vector Regression-Based Monte Carlo Simulation of Flexible Water Clusters.
    Bose S; Chakrabarty S; Ghosh D
    ACS Omega; 2020 Apr; 5(13):7065-7073. PubMed ID: 32280847
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Accelerating the Convergence of Self-Consistent Field Calculations Using the Many-Body Expansion.
    Ballesteros F; Lao KU
    J Chem Theory Comput; 2022 Jan; 18(1):179-191. PubMed ID: 34881906
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cis-->trans, trans-->cis isomerizations and N-O bond dissociation of nitrous acid (HONO) on an ab initio potential surface obtained by novelty sampling and feed-forward neural network fitting.
    Le HM; Raff LM
    J Chem Phys; 2008 May; 128(19):194310. PubMed ID: 18500868
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intrinsic Bond Energies from a Bonds-in-Molecules Neural Network.
    Yao K; Herr JE; Brown SN; Parkhill J
    J Phys Chem Lett; 2017 Jun; 8(12):2689-2694. PubMed ID: 28573865
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ab-initio-based global double many-body expansion potential energy surface for the electronic ground state of the ammonia molecule.
    Li YQ; Varandas AJ
    J Phys Chem A; 2010 Jun; 114(24):6669-80. PubMed ID: 20507132
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular Dynamics Driven by the Many-Body Expansion (MBE-MD).
    Heindel JP; Xantheas SS
    J Chem Theory Comput; 2021 Dec; 17(12):7341-7352. PubMed ID: 34723531
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simultaneous fitting of a potential-energy surface and its corresponding force fields using feedforward neural networks.
    Pukrittayakamee A; Malshe M; Hagan M; Raff LM; Narulkar R; Bukkapatnum S; Komanduri R
    J Chem Phys; 2009 Apr; 130(13):134101. PubMed ID: 19355711
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cluster many-body expansion: A many-body expansion of the electron correlation energy about a cluster mean field reference.
    Abraham V; Mayhall NJ
    J Chem Phys; 2021 Aug; 155(5):054101. PubMed ID: 34364343
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combining Force Fields and Neural Networks for an Accurate Representation of Chemically Diverse Molecular Interactions.
    Illarionov A; Sakipov S; Pereyaslavets L; Kurnikov IV; Kamath G; Butin O; Voronina E; Ivahnenko I; Leontyev I; Nawrocki G; Darkhovskiy M; Olevanov M; Cherniavskyi YK; Lock C; Greenslade S; Sankaranarayanan SK; Kurnikova MG; Potoff J; Kornberg RD; Levitt M; Fain B
    J Am Chem Soc; 2023 Nov; 145(43):23620-23629. PubMed ID: 37856313
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The combined fragmentation and systematic molecular fragmentation methods.
    Collins MA; Cvitkovic MW; Bettens RP
    Acc Chem Res; 2014 Sep; 47(9):2776-85. PubMed ID: 24972052
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Variational Formulation of the Generalized Many-Body Expansion with Self-Consistent Charge Embedding: Simple and Correct Analytic Energy Gradient for Fragment-Based
    Liu J; Rana B; Liu KY; Herbert JM
    J Phys Chem Lett; 2019 Jul; 10(14):3877-3886. PubMed ID: 31251619
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A reactive, scalable, and transferable model for molecular energies from a neural network approach based on local information.
    Unke OT; Meuwly M
    J Chem Phys; 2018 Jun; 148(24):241708. PubMed ID: 29960298
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Understanding the many-body expansion for large systems. III. Critical role of four-body terms, counterpoise corrections, and cutoffs.
    Liu KY; Herbert JM
    J Chem Phys; 2017 Oct; 147(16):161729. PubMed ID: 29096456
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The successful merger of theoretical thermochemistry with fragment-based methods in quantum chemistry.
    Ramabhadran RO; Raghavachari K
    Acc Chem Res; 2014 Dec; 47(12):3596-604. PubMed ID: 25393551
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Convergence of the Many-Body Expansion for Energy and Forces for Classical Polarizable Models in the Condensed Phase.
    Demerdash O; Head-Gordon T
    J Chem Theory Comput; 2016 Aug; 12(8):3884-93. PubMed ID: 27405002
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reproducing global potential energy surfaces with continuous-filter convolutional neural networks.
    Brorsen KR
    J Chem Phys; 2019 May; 150(20):204104. PubMed ID: 31153202
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improving model accuracy using optimal linear combinations of trained neural networks.
    Hashem S; Schmeiser B
    IEEE Trans Neural Netw; 1995; 6(3):792-4. PubMed ID: 18263368
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neural networks as a tool for compact representation of ab initio molecular potential energy surfaces.
    Tafeit E; Estelberger W; Horejsi R; Moeller R; Oettl K; Vrecko K; Reibnegger G
    J Mol Graph; 1996 Feb; 14(1):12-8. PubMed ID: 8744568
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of linear-scaling semiempirical methods and combined quantum mechanical/molecular mechanical methods for enzymic reactions. II. An energy decomposition analysis.
    Titmuss SJ; Cummins PL; Rendell AP; Bliznyuk AA; Gready JE
    J Comput Chem; 2002 Nov; 23(14):1314-22. PubMed ID: 12214314
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Towards accurate ab initio QM/MM calculations of free-energy profiles of enzymatic reactions.
    Rosta E; Klähn M; Warshel A
    J Phys Chem B; 2006 Feb; 110(6):2934-41. PubMed ID: 16471904
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.