These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 28063436)

  • 41. Generalized Switch Functions in the Multilevel Many-Body Expansion Method and Its Application to Water Clusters.
    Chen GD; Weng J; Song G; Li ZH
    J Chem Theory Comput; 2017 May; 13(5):2010-2020. PubMed ID: 28422489
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Accurate theoretical chemistry with coupled pair models.
    Neese F; Hansen A; Wennmohs F; Grimme S
    Acc Chem Res; 2009 May; 42(5):641-8. PubMed ID: 19296607
    [TBL] [Abstract][Full Text] [Related]  

  • 43. S/G-1: an ab initio force-field blending frozen Hermite Gaussian densities and distributed multipoles. Proof of concept and first applications to metal cations.
    Chaudret R; Gresh N; Narth C; Lagardère L; Darden TA; Cisneros GA; Piquemal JP
    J Phys Chem A; 2014 Sep; 118(35):7598-612. PubMed ID: 24878003
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The many-body expansion approach to ab initio calculation of electric field gradients in molecular crystals.
    Gregorovič A
    J Chem Phys; 2020 Mar; 152(12):124105. PubMed ID: 32241128
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparison of charge models for fixed-charge force fields: small-molecule hydration free energies in explicit solvent.
    Mobley DL; Dumont E; Chodera JD; Dill KA
    J Phys Chem B; 2007 Mar; 111(9):2242-54. PubMed ID: 17291029
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dynamical effects in ab initio NMR calculations: classical force fields fitted to quantum forces.
    Robinson M; Haynes PD
    J Chem Phys; 2010 Aug; 133(8):084109. PubMed ID: 20815562
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Neural Network Potential Energy Surfaces for Small Molecules and Reactions.
    Manzhos S; Carrington T
    Chem Rev; 2021 Aug; 121(16):10187-10217. PubMed ID: 33021368
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Machine learning prediction of interaction energies in rigid water clusters.
    Bose S; Dhawan D; Nandi S; Sarkar RR; Ghosh D
    Phys Chem Chem Phys; 2018 Sep; 20(35):22987-22996. PubMed ID: 30156235
    [TBL] [Abstract][Full Text] [Related]  

  • 49. One-electron electron-molecule potentials consistent with ab initio Møller-Plesset theory.
    Simons J
    J Phys Chem A; 2010 Aug; 114(33):8631-43. PubMed ID: 20380369
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Geometry optimization of radicaloid systems using improved virtual orbital-complete active space configuration interaction (IVO-CASCI) analytical gradient method.
    Chattopadhyay S; Chaudhuri RK; Freed KF
    J Phys Chem A; 2011 Apr; 115(16):3665-78. PubMed ID: 20586459
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Understanding the many-body expansion for large systems. II. Accuracy considerations.
    Lao KU; Liu KY; Richard RM; Herbert JM
    J Chem Phys; 2016 Apr; 144(16):164105. PubMed ID: 27131529
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Theoretical investigation of the dissociation dynamics of vibrationally excited vinyl bromide on an ab initio potential-energy surface obtained using modified novelty sampling and feedforward neural networks. II. Numerical application of the method.
    Malshe M; Raff LM; Rockley MG; Hagan M; Agrawal PM; Komanduri R
    J Chem Phys; 2007 Oct; 127(13):134105. PubMed ID: 17919009
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Free energy perturbation study of water dimer dissociation kinetics.
    Ming Y; Lai G; Tong C; Wood RH; Doren DJ
    J Chem Phys; 2004 Jul; 121(2):773-7. PubMed ID: 15260604
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Representation of Ion-Protein Interactions Using the Drude Polarizable Force-Field.
    Li H; Ngo V; Da Silva MC; Salahub DR; Callahan K; Roux B; Noskov SY
    J Phys Chem B; 2015 Jul; 119(29):9401-16. PubMed ID: 25578354
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Developing ab initio quality force fields from condensed phase quantum-mechanics/molecular-mechanics calculations through the adaptive force matching method.
    Akin-Ojo O; Song Y; Wang F
    J Chem Phys; 2008 Aug; 129(6):064108. PubMed ID: 18715052
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Correlation Energy Extrapolation by Many-Body Expansion.
    Boschen JS; Theis D; Ruedenberg K; Windus TL
    J Phys Chem A; 2017 Feb; 121(4):836-844. PubMed ID: 28068093
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Formulation of the Many-Body Expansion (MBE) for Periodic Systems: Application to Several Ice Phases.
    Herman KM; Xantheas SS
    J Phys Chem Lett; 2023 Feb; 14(4):989-999. PubMed ID: 36692897
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Parametrization of analytic interatomic potential functions using neural networks.
    Malshe M; Narulkar R; Raff LM; Hagan M; Bukkapatnam S; Komanduri R
    J Chem Phys; 2008 Jul; 129(4):044111. PubMed ID: 18681638
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Energy benchmarks for water clusters and ice structures from an embedded many-body expansion.
    Gillan MJ; Alfè D; Bygrave PJ; Taylor CR; Manby FR
    J Chem Phys; 2013 Sep; 139(11):114101. PubMed ID: 24070273
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Molecular dynamics investigations of the dissociation of SiO2 on an ab initio potential energy surface obtained using neural network methods.
    Agrawal PM; Raff LM; Hagan MT; Komanduri R
    J Chem Phys; 2006 Apr; 124(13):134306. PubMed ID: 16613454
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.