These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 28063639)

  • 21. Study of the preferential solvation of some betaine dyes in binary solvent mixtures.
    Ghoneim N
    Spectrochim Acta A Mol Biomol Spectrosc; 2001 Aug; 57(9):1877-84. PubMed ID: 11506040
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Subcritical water chromatography: A green approach to high-temperature liquid chromatography.
    Yang Y
    J Sep Sci; 2007 May; 30(8):1131-40. PubMed ID: 17595948
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of methanol-water and acetonitrile-water binary mixtures as eluents for temperature-dependent inclusion chromatography.
    Zarzycki PK; Włodarczyk E; Lou DW; Jinno K
    Anal Sci; 2006 Mar; 22(3):453-6. PubMed ID: 16733322
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Temperature effect on peak width and column efficiency in subcritical water chromatography.
    Yang Y; Lamm LJ; He P; Kondo T
    J Chromatogr Sci; 2002 Feb; 40(2):107-12. PubMed ID: 11881703
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mobile phase effects in reversed-phase liquid chromatography: a comparison of acetonitrile/water and methanol/water solvents as studied by molecular simulation.
    Rafferty JL; Siepmann JI; Schure MR
    J Chromatogr A; 2011 Apr; 1218(16):2203-13. PubMed ID: 21388628
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Green chiral HPLC enantiomeric separations using high temperature liquid chromatography and subcritical water on Chiralcel OD and Chiralpak AD.
    Droux S; Félix G
    Chirality; 2011; 23 Suppl 1():E105-9. PubMed ID: 21997897
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Retention of functional polymers in liquid adsorption chromatography: effect of the end groups in PEGs and their methyl ethers in different mobile phases.
    Nguyen VC; Trathnigg B
    J Sep Sci; 2010 Apr; 33(8):1052-7. PubMed ID: 20187029
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Green chiral HPLC study of the stability of Chiralcel OD under high temperature liquid chromatography and subcritical water conditions.
    Droux S; Roy M; Félix G
    J Chromatogr B Analyt Technol Biomed Life Sci; 2014 Oct; 968():22-5. PubMed ID: 24816048
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Solvatochromic parameter values and pH in acetonitrile-water mixtures. Optimization of mobile phase for the separation of peptides by high-performance liquid chromatography.
    Barbosa J; Sanz-Nebot V; Toro I
    J Chromatogr A; 1996 Feb; 725(2):249-60. PubMed ID: 8900575
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Subcritical water extraction of organic matter from sedimentary rocks.
    Luong D; Sephton MA; Watson JS
    Anal Chim Acta; 2015 Jun; 879():48-57. PubMed ID: 26002476
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction of retention in reversed-phase liquid chromatography by means of the polarity parameter model.
    Lázaro E; Izquierdo P; Ràfols C; Rosés M; Bosch E
    J Chromatogr A; 2009 Jul; 1216(27):5214-27. PubMed ID: 19493533
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Carbon dioxide modified subcritical water chromatography.
    Fogwill MO; Thurbide KB
    J Chromatogr A; 2008 Jul; 1200(1):49-54. PubMed ID: 18384798
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Linear modeling of the soil-water partition coefficient normalized to organic carbon content by reversed-phase thin-layer chromatography.
    Andrić F; Šegan S; Dramićanin A; Majstorović H; Milojković-Opsenica D
    J Chromatogr A; 2016 Aug; 1458():136-44. PubMed ID: 27378251
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microchip electrospray: cone-jet stability analysis for water-acetonitrile and water-methanol mobile phases.
    Jung S; Effelsberg U; Tallarek U
    J Chromatogr A; 2011 Mar; 1218(12):1611-9. PubMed ID: 21333298
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigation of the temperature dependence of water adsorption on silica-based stationary phases in hydrophilic interaction liquid chromatography.
    Bartó E; Felinger A; Jandera P
    J Chromatogr A; 2017 Mar; 1489():143-148. PubMed ID: 28213986
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The use of Ościk's equation to describe the retention in reversed phase liquid chromatography.
    Kwietniewski L; Rycyk M
    J Chromatogr A; 2017 May; 1496():45-50. PubMed ID: 28363418
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of common mobile-phase volume markers with polar-group-containing reversed-phase stationary phases.
    Perry PR; Coym JW
    J Sep Sci; 2010 Aug; 33(15):2310-5. PubMed ID: 20589781
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chromatographic behaviour of synthetic high pressure high temperature diamond in aqueous normal phase chromatography.
    Peristyy A; Paull B; Nesterenko PN
    J Chromatogr A; 2016 Oct; 1470():59-69. PubMed ID: 27712886
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Off-line coupling of subcritical water extraction with subcritical water chromatography via a sorbent trap and thermal desorption.
    Lamm LJ; Yang Y
    Anal Chem; 2003 May; 75(10):2237-42. PubMed ID: 12918961
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of chemically bonded stationary phases and mobile phase composition on beta-blockers retention in RP-HPLC.
    Buszewski B; Welerowicz T; Kowalkowski T
    Biomed Chromatogr; 2009 Mar; 23(3):324-33. PubMed ID: 18800332
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.