These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
421 related articles for article (PubMed ID: 28063905)
1. Trichloroethylene-induced formic aciduria in the male C Lock EA; Keane P; Rowe PH; Foster JR; Antoine D; Morris CM Toxicology; 2017 Mar; 378():76-85. PubMed ID: 28063905 [TBL] [Abstract][Full Text] [Related]
2. Trichloroethylene and trichloroethanol-induced formic aciduria and renal injury in male F-344 rats following 12 weeks exposure. Yaqoob N; Evans A; Foster JR; Lock EA Toxicology; 2014 Sep; 323():70-7. PubMed ID: 24923549 [TBL] [Abstract][Full Text] [Related]
3. Trichloroethylene-induced formic aciduria: effect of dose, sex and strain of rat. Yaqoob N; Evans AR; Lock EA Toxicology; 2013 Feb; 304():49-56. PubMed ID: 23211455 [TBL] [Abstract][Full Text] [Related]
4. Lack of formic acid production in rat hepatocytes and human renal proximal tubule cells exposed to chloral hydrate or trichloroacetic acid. Lock EA; Reed CJ; McMillan JM; Oatis JE; Schnellmann RG Toxicology; 2007 Feb; 230(2-3):234-43. PubMed ID: 17161896 [TBL] [Abstract][Full Text] [Related]
5. Formic acid excretion in rats exposed to trichloroethylene: a possible explanation for renal toxicity in long-term studies. Green T; Dow J; Foster JR; Hext PM Toxicology; 1998 May; 127(1-3):39-47. PubMed ID: 9699792 [TBL] [Abstract][Full Text] [Related]
6. Comparative analysis of the relationship between trichloroethylene metabolism and tissue-specific toxicity among inbred mouse strains: kidney effects. Yoo HS; Bradford BU; Kosyk O; Uehara T; Shymonyak S; Collins LB; Bodnar WM; Ball LM; Gold A; Rusyn I J Toxicol Environ Health A; 2015; 78(1):32-49. PubMed ID: 25424545 [TBL] [Abstract][Full Text] [Related]
7. NTP Carcinogenesis Studies of Trichloroethylene (Without Epichlorohydrin) (CAS No. 79-01-6) in F344/N Rats and B6C3F1 Mice (Gavage Studies). National Toxicology Program Natl Toxicol Program Tech Rep Ser; 1990 May; 243():1-174. PubMed ID: 12750750 [TBL] [Abstract][Full Text] [Related]
8. Trichloroethylene: mechanisms of renal toxicity and renal cancer and relevance to risk assessment. Lock EA; Reed CJ Toxicol Sci; 2006 Jun; 91(2):313-31. PubMed ID: 16421178 [TBL] [Abstract][Full Text] [Related]
9. Formic acid excretion in rats and mice exposed to bromodichloromethane: a possible link to renal tubule cell proliferation in long-term studies. Lock T; Cottrell L; Soames T; Jacobsen M; Williams R Arch Toxicol; 2004 Jul; 78(7):410-7. PubMed ID: 15141287 [TBL] [Abstract][Full Text] [Related]
10. Analysis of renal cell transformation following exposure to trichloroethene in vivo and its metabolite S-(dichlorovinyl)-L-cysteine in vitro. Mally A; Walker CL; Everitt JI; Dekant W; Vamvakas S Toxicology; 2006 Jul; 224(1-2):108-18. PubMed ID: 16730402 [TBL] [Abstract][Full Text] [Related]
11. Increased formic acid excretion and the development of kidney toxicity in rats following chronic dosing with trichloroethanol, a major metabolite of trichloroethylene. Green T; Dow J; Foster J Toxicology; 2003 Sep; 191(2-3):109-19. PubMed ID: 12965114 [TBL] [Abstract][Full Text] [Related]
12. Trichloroethylene cancer risk: simplified calculation of PBPK-based MCLs for cytotoxic end points. Bogen KT; Gold LS Regul Toxicol Pharmacol; 1997 Feb; 25(1):26-42. PubMed ID: 9056499 [TBL] [Abstract][Full Text] [Related]
13. Comparative analysis of the relationship between trichloroethylene metabolism and tissue-specific toxicity among inbred mouse strains: liver effects. Yoo HS; Bradford BU; Kosyk O; Shymonyak S; Uehara T; Collins LB; Bodnar WM; Ball LM; Gold A; Rusyn I J Toxicol Environ Health A; 2015; 78(1):15-31. PubMed ID: 25424544 [TBL] [Abstract][Full Text] [Related]
14. The effect of trichloroethylene metabolites on the hepatic vitamin B Yaqoob N; Bloch KM; Evans AR; Lock EA Toxicol Res (Camb); 2020 Apr; 9(2):117-126. PubMed ID: 32440343 [TBL] [Abstract][Full Text] [Related]
15. The Contribution of Peroxisome Proliferator-Activated Receptor Alpha to the Relationship Between Toxicokinetics and Toxicodynamics of Trichloroethylene. Yoo HS; Cichocki JA; Kim S; Venkatratnam A; Iwata Y; Kosyk O; Bodnar W; Sweet S; Knap A; Wade T; Campbell J; Clewell HJ; Melnyk SB; Chiu WA; Rusyn I Toxicol Sci; 2015 Oct; 147(2):339-49. PubMed ID: 26136231 [TBL] [Abstract][Full Text] [Related]
16. A physiologically based pharmacokinetic model for trichloroethylene and its metabolites, chloral hydrate, trichloroacetate, dichloroacetate, trichloroethanol, and trichloroethanol glucuronide in B6C3F1 mice. Abbas R; Fisher JW Toxicol Appl Pharmacol; 1997 Nov; 147(1):15-30. PubMed ID: 9356303 [TBL] [Abstract][Full Text] [Related]
17. Evidence for trichloroethylene bioactivation and adduct formation in the rat epididymis and efferent ducts. DuTeaux SB; Hengel MJ; DeGroot DE; Jelks KA; Miller MG Biol Reprod; 2003 Sep; 69(3):771-9. PubMed ID: 12724279 [TBL] [Abstract][Full Text] [Related]
18. Trichloroethylene induced vitamin B(12) and folate deficiency leads to increased formic acid excretion in the rat. Dow JL; Green T Toxicology; 2000 May; 146(2-3):123-36. PubMed ID: 10814845 [TBL] [Abstract][Full Text] [Related]
19. Metabolomics reveals trichloroacetate as a major contributor to trichloroethylene-induced metabolic alterations in mouse urine and serum. Fang ZZ; Krausz KW; Tanaka N; Li F; Qu A; Idle JR; Gonzalez FJ Arch Toxicol; 2013 Nov; 87(11):1975-1987. PubMed ID: 23575800 [TBL] [Abstract][Full Text] [Related]
20. Complement C5a-C5aR interaction enhances MAPK signaling pathway activities to mediate renal injury in trichloroethylene sensitized BALB/c mice. Zhang JX; Zha WS; Ye LP; Wang F; Wang H; Shen T; Wu CH; Zhu QX J Appl Toxicol; 2016 Feb; 36(2):271-84. PubMed ID: 26095957 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]