These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. The metabolic interaction of cancer cells and fibroblasts - coupling between NAD(P)H and FAD, intracellular pH and hydrogen peroxide. Druzhkova IN; Shirmanova MV; Lukina MM; Dudenkova VV; Mishina NM; Zagaynova EV Cell Cycle; 2016 May; 15(9):1257-66. PubMed ID: 26986068 [TBL] [Abstract][Full Text] [Related]
4. Two-photon FLIM of NAD(P)H and FAD in mesenchymal stem cells undergoing either osteogenic or chondrogenic differentiation. Meleshina AV; Dudenkova VV; Bystrova AS; Kuznetsova DS; Shirmanova MV; Zagaynova EV Stem Cell Res Ther; 2017 Jan; 8(1):15. PubMed ID: 28129796 [TBL] [Abstract][Full Text] [Related]
5. Investigation of Mitochondrial Metabolic Response to Doxorubicin in Prostate Cancer Cells: An NADH, FAD and Tryptophan FLIM Assay. Alam SR; Wallrabe H; Svindrych Z; Chaudhary AK; Christopher KG; Chandra D; Periasamy A Sci Rep; 2017 Sep; 7(1):10451. PubMed ID: 28874842 [TBL] [Abstract][Full Text] [Related]
6. FLIM and emission spectral analysis of caspase-3 activation inside single living cell during anticancer drug-induced cell death. Pan W; Qu J; Chen T; Sun L; Qi J Eur Biophys J; 2009 Apr; 38(4):447-56. PubMed ID: 19132366 [TBL] [Abstract][Full Text] [Related]
7. Single-cell redox states analyzed by fluorescence lifetime metrics and tryptophan FRET interaction with NAD(P)H. Cao R; Wallrabe H; Siller K; Rehman Alam S; Periasamy A Cytometry A; 2019 Jan; 95(1):110-121. PubMed ID: 30604477 [TBL] [Abstract][Full Text] [Related]
8. Insight into redox regulation of apoptosis in cancer cells with multiparametric live-cell microscopy. Shirmanova MV; Gavrina AI; Kovaleva TF; Dudenkova VV; Zelenova EE; Shcheslavskiy VI; Mozherov AM; Snopova LB; Lukyanov KA; Zagaynova EV Sci Rep; 2022 Mar; 12(1):4476. PubMed ID: 35296739 [TBL] [Abstract][Full Text] [Related]
9. A novel bicistronic sensor vector for detecting caspase-3 activation. Vagner T; Mouravlev A; Young D J Pharmacol Toxicol Methods; 2015; 72():11-8. PubMed ID: 25482476 [TBL] [Abstract][Full Text] [Related]
10. Metabolic cofactors NAD(P)H and FAD as potential indicators of cancer cell response to chemotherapy with paclitaxel. Lukina MM; Dudenkova VV; Ignatova NI; Druzhkova IN; Shimolina LE; Zagaynova EV; Shirmanova MV Biochim Biophys Acta Gen Subj; 2018 Aug; 1862(8):1693-1700. PubMed ID: 29719197 [TBL] [Abstract][Full Text] [Related]
11. Real-time visualization of caspase-3 activation by fluorescence resonance energy transfer (FRET). Alasia S; Cocito C; Merighi A; Lossi L Methods Mol Biol; 2015; 1254():99-113. PubMed ID: 25431060 [TBL] [Abstract][Full Text] [Related]
12. Quantitative analysis of caspase-3 activation by fitting fluorescence emission spectra in living cells. Wang L; Chen T; Qu J; Wei X Micron; 2009 Dec; 40(8):811-20. PubMed ID: 19647441 [TBL] [Abstract][Full Text] [Related]
13. Apoptosis induction-related cytosolic calcium responses revealed by the dual FRET imaging of calcium signals and caspase-3 activation in a single cell. Miyamoto A; Miyauchi H; Kogure T; Miyawaki A; Michikawa T; Mikoshiba K Biochem Biophys Res Commun; 2015 Apr; 460(1):82-7. PubMed ID: 25998736 [TBL] [Abstract][Full Text] [Related]
14. Long-term fluorescence lifetime imaging of a genetically encoded sensor for caspase-3 activity in mouse tumor xenografts. Zherdeva V; Kazachkina NI; Shcheslavskiy V; Savitsky AP J Biomed Opt; 2018 Mar; 23(3):1-11. PubMed ID: 29500873 [TBL] [Abstract][Full Text] [Related]
15. The use of a stably expressed FRET biosensor for determining the potency of cancer drugs. Bozza WP; Di X; Takeda K; Rivera Rosado LA; Pariser S; Zhang B PLoS One; 2014; 9(9):e107010. PubMed ID: 25188024 [TBL] [Abstract][Full Text] [Related]
17. Changes in intramitochondrial and cytosolic pH: early events that modulate caspase activation during apoptosis. Matsuyama S; Llopis J; Deveraux QL; Tsien RY; Reed JC Nat Cell Biol; 2000 Jun; 2(6):318-25. PubMed ID: 10854321 [TBL] [Abstract][Full Text] [Related]
18. The heme precursor 5-aminolevulinic acid disrupts the Warburg effect in tumor cells and induces caspase-dependent apoptosis. Sugiyama Y; Hagiya Y; Nakajima M; Ishizuka M; Tanaka T; Ogura S Oncol Rep; 2014 Mar; 31(3):1282-6. PubMed ID: 24366173 [TBL] [Abstract][Full Text] [Related]
19. Ex vivo imaging of active caspase 3 by a FRET-based molecular probe demonstrates the cellular dynamics and localization of the protease in cerebellar granule cells and its regulation by the apoptosis-inhibiting protein survivin. Lossi L; Cocito C; Alasia S; Merighi A Mol Neurodegener; 2016 Apr; 11():34. PubMed ID: 27122136 [TBL] [Abstract][Full Text] [Related]
20. Synthetic retinoid CD437 induces apoptosis of esophageal squamous HET-1A cells through the caspase-3-dependent pathway. Wan X; Duncan MD; Nass P; Harmon JW Anticancer Res; 2001; 21(4A):2657-63. PubMed ID: 11724335 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]