These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 28064006)

  • 1. Versatile RNA tetra-U helix linking motif as a toolkit for nucleic acid nanotechnology.
    Bui MN; Brittany Johnson M; Viard M; Satterwhite E; Martins AN; Li Z; Marriott I; Afonin KA; Khisamutdinov EF
    Nanomedicine; 2017 Apr; 13(3):1137-1146. PubMed ID: 28064006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Versatile kit of robust nanoshapes self-assembling from RNA and DNA modules.
    Monferrer A; Zhang D; Lushnikov AJ; Hermann T
    Nat Commun; 2019 Feb; 10(1):608. PubMed ID: 30723214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of stable and RNase-resistant RNA nanoparticles active in gearing the nanomotors for viral DNA packaging.
    Liu J; Guo S; Cinier M; Shlyakhtenko LS; Shu Y; Chen C; Shen G; Guo P
    ACS Nano; 2011 Jan; 5(1):237-46. PubMed ID: 21155596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Triggering of RNA interference with RNA-RNA, RNA-DNA, and DNA-RNA nanoparticles.
    Afonin KA; Viard M; Kagiampakis I; Case CL; Dobrovolskaia MA; Hofmann J; Vrzak A; Kireeva M; Kasprzak WK; KewalRamani VN; Shapiro BA
    ACS Nano; 2015 Jan; 9(1):251-9. PubMed ID: 25521794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spherical nucleic acids as a divergent platform for synthesizing RNA-nanoparticle conjugates through enzymatic ligation.
    Rouge JL; Hao L; Wu XA; Briley WE; Mirkin CA
    ACS Nano; 2014 Sep; 8(9):8837-43. PubMed ID: 25144723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA self-assembly and RNA nanotechnology.
    Grabow WW; Jaeger L
    Acc Chem Res; 2014 Jun; 47(6):1871-80. PubMed ID: 24856178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physicochemically tunable polyfunctionalized RNA square architecture with fluorogenic and ribozymatic properties.
    Jasinski DL; Khisamutdinov EF; Lyubchenko YL; Guo P
    ACS Nano; 2014 Aug; 8(8):7620-9. PubMed ID: 24971772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uniqueness, advantages, challenges, solutions, and perspectives in therapeutics applying RNA nanotechnology.
    Guo P; Haque F; Hallahan B; Reif R; Li H
    Nucleic Acid Ther; 2012 Aug; 22(4):226-45. PubMed ID: 22913595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Directed Assembly of Nucleic Acid-Based Polymeric Nanoparticles from Molecular Tetravalent Cores.
    Hong BJ; Eryazici I; Bleher R; Thaner RV; Mirkin CA; Nguyen ST
    J Am Chem Soc; 2015 Jul; 137(25):8184-91. PubMed ID: 25980315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unlocked nucleic acids with a pyrene-modified uracil: synthesis, hybridization studies, fluorescent properties and i-motif stability.
    Perlíková P; Karlsen KK; Pedersen EB; Wengel J
    Chembiochem; 2014 Jan; 15(1):146-56. PubMed ID: 24501777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functionally-interdependent shape-switching nanoparticles with controllable properties.
    Halman JR; Satterwhite E; Roark B; Chandler M; Viard M; Ivanina A; Bindewald E; Kasprzak WK; Panigaj M; Bui MN; Lu JS; Miller J; Khisamutdinov EF; Shapiro BA; Dobrovolskaia MA; Afonin KA
    Nucleic Acids Res; 2017 Feb; 45(4):2210-2220. PubMed ID: 28108656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An RNA Origami Octahedron with Intrinsic siRNAs for Potent Gene Knockdown.
    Høiberg HC; Sparvath SM; Andersen VL; Kjems J; Andersen ES
    Biotechnol J; 2019 Jan; 14(1):e1700634. PubMed ID: 29802763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA versatility, flexibility, and thermostability for practice in RNA nanotechnology and biomedical applications.
    Haque F; Pi F; Zhao Z; Gu S; Hu H; Yu H; Guo P
    Wiley Interdiscip Rev RNA; 2018 Jan; 9(1):. PubMed ID: 29105333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of 14 different RNA nanoparticles for specific tumor targeting without accumulation in normal organs.
    Shu Y; Haque F; Shu D; Li W; Zhu Z; Kotb M; Lyubchenko Y; Guo P
    RNA; 2013 Jun; 19(6):767-77. PubMed ID: 23604636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatially-interactive biomolecular networks organized by nucleic acid nanostructures.
    Fu J; Liu M; Liu Y; Yan H
    Acc Chem Res; 2012 Aug; 45(8):1215-26. PubMed ID: 22642503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Composing RNA Nanostructures from a Syntax of RNA Structural Modules.
    Geary C; Chworos A; Verzemnieks E; Voss NR; Jaeger L
    Nano Lett; 2017 Nov; 17(11):7095-7101. PubMed ID: 29039189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA nanotechnology: engineering, assembly and applications in detection, gene delivery and therapy.
    Guo P
    J Nanosci Nanotechnol; 2005 Dec; 5(12):1964-82. PubMed ID: 16430131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In silico design and enzymatic synthesis of functional RNA nanoparticles.
    Afonin KA; Kasprzak WK; Bindewald E; Kireeva M; Viard M; Kashlev M; Shapiro BA
    Acc Chem Res; 2014 Jun; 47(6):1731-41. PubMed ID: 24758371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational Approaches to Nucleic Acid Origami.
    Jabbari H; Aminpour M; Montemagno C
    ACS Comb Sci; 2015 Oct; 17(10):535-47. PubMed ID: 26348196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNA nanotechnology for computer design and in vivo computation.
    Qiu M; Khisamutdinov E; Zhao Z; Pan C; Choi JW; Leontis NB; Guo P
    Philos Trans A Math Phys Eng Sci; 2013 Oct; 371(2000):20120310. PubMed ID: 24000362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.