These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Lack of mitochondrial ferritin aggravated neurological deficits via enhancing oxidative stress in a traumatic brain injury murine model. Wang L; Wang L; Dai Z; Wu P; Shi H; Zhao S Biosci Rep; 2017 Dec; 37(6):. PubMed ID: 28963372 [TBL] [Abstract][Full Text] [Related]
3. Comprehensive Profiling of Modulation of Nitric Oxide Levels and Mitochondrial Activity in the Injured Brain: An Experimental Study Based on the Fluid Percussion Injury Model in Rats. Üçal M; Kraitsy K; Weidinger A; Paier-Pourani J; Patz S; Fink B; Molcanyi M; Schäfer U J Neurotrauma; 2017 Jan; 34(2):475-486. PubMed ID: 27165518 [TBL] [Abstract][Full Text] [Related]
6. The Role of Nitric Oxide and Sympathetic Control in Cerebral Autoregulation in the Setting of Subarachnoid Hemorrhage and Traumatic Brain Injury. Guo ZN; Shao A; Tong LS; Sun W; Liu J; Yang Y Mol Neurobiol; 2016 Aug; 53(6):3606-3615. PubMed ID: 26108186 [TBL] [Abstract][Full Text] [Related]
7. Resuscitation from experimental traumatic brain injury by agmatine therapy. Kuo JR; Lo CJ; Chio CC; Chang CP; Lin MT Resuscitation; 2007 Dec; 75(3):506-14. PubMed ID: 17629391 [TBL] [Abstract][Full Text] [Related]
8. Mitochondria and microRNA crosstalk in traumatic brain injury. Wang WX; Sullivan PG; Springer JE Prog Neuropsychopharmacol Biol Psychiatry; 2017 Feb; 73():104-108. PubMed ID: 26925707 [TBL] [Abstract][Full Text] [Related]
9. Regulation of Mitochondrial Function and Glutamatergic System Are the Target of Guanosine Effect in Traumatic Brain Injury. Dobrachinski F; da Rosa Gerbatin R; Sartori G; Ferreira Marques N; Zemolin AP; Almeida Silva LF; Franco JL; Freire Royes LF; Rechia Fighera M; Antunes Soares FA J Neurotrauma; 2017 Apr; 34(7):1318-1328. PubMed ID: 27931151 [TBL] [Abstract][Full Text] [Related]
10. Role of nitric oxide in traumatic brain injury in the rat. Wada K; Chatzipanteli K; Busto R; Dietrich WD J Neurosurg; 1998 Nov; 89(5):807-18. PubMed ID: 9817419 [TBL] [Abstract][Full Text] [Related]
11. Mitochondrial dysfunctioning and neuroinflammation: Recent highlights on the possible mechanisms involved in Traumatic Brain Injury. Kumar Sahel D; Kaira M; Raj K; Sharma S; Singh S Neurosci Lett; 2019 Sep; 710():134347. PubMed ID: 31229625 [TBL] [Abstract][Full Text] [Related]
13. Acute upregulation of neuronal mitochondrial type-1 cannabinoid receptor and it's role in metabolic defects and neuronal apoptosis after TBI. Xu Z; Lv XA; Dai Q; Ge YQ; Xu J Mol Brain; 2016 Aug; 9(1):75. PubMed ID: 27485212 [TBL] [Abstract][Full Text] [Related]
14. Rescuing mitochondria in traumatic brain injury and intracerebral hemorrhages - A potential therapeutic approach. Ahluwalia M; Kumar M; Ahluwalia P; Rahimi S; Vender JR; Raju RP; Hess DC; Baban B; Vale FL; Dhandapani KM; Vaibhav K Neurochem Int; 2021 Nov; 150():105192. PubMed ID: 34560175 [TBL] [Abstract][Full Text] [Related]
15. Activation of cyclin D1 affects mitochondrial mass following traumatic brain injury. Saha P; Gupta R; Sen T; Sen N Neurobiol Dis; 2018 Oct; 118():108-116. PubMed ID: 30010002 [TBL] [Abstract][Full Text] [Related]