These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 28064123)

  • 1. Arsenic treatment and power generation with a dual-chambered fuel cell with anionic and cationic membranes using NaHCO
    Maitlo HA; Kim JH; Park JY
    Chemosphere; 2017 Apr; 172():138-146. PubMed ID: 28064123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Condition optimization of iron-air fuel cell to treat phosphate-containing wastewater regarding sustainable development.
    Lai LL; Liu C; Liu MY; Wan SZ; Zhao ZG; Wang R; Yuan LJ
    Chemosphere; 2023 Feb; 313():137507. PubMed ID: 36495975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioelectricity production from wastewater treatment in dual chambered microbial fuel cell (MFC) using selectively enriched mixed microflora: Effect of catholyte.
    Venkata Mohan S; Saravanan R; Raghavulu SV; Mohanakrishna G; Sarma PN
    Bioresour Technol; 2008 Feb; 99(3):596-603. PubMed ID: 17321135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Treatment of synthetic arsenate wastewater with iron-air fuel cell electrocoagulation to supply drinking water and electricity in remote areas.
    Kim JH; Maitlo HA; Park JY
    Water Res; 2017 May; 115():278-286. PubMed ID: 28284094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells.
    Kim JR; Cheng S; Oh SE; Logan BE
    Environ Sci Technol; 2007 Feb; 41(3):1004-9. PubMed ID: 17328216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon dioxide addition to microbial fuel cell cathodes maintains sustainable catholyte pH and improves anolyte pH, alkalinity, and conductivity.
    Fornero JJ; Rosenbaum M; Cotta MA; Angenent LT
    Environ Sci Technol; 2010 Apr; 44(7):2728-34. PubMed ID: 20178380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hexavalent chromium reduction and energy recovery by using dual-chambered microbial fuel cell.
    Gangadharan P; Nambi IM
    Water Sci Technol; 2015; 71(3):353-8. PubMed ID: 25714633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of anodic metabolisms in bioelectricity production during treatment of dairy wastewater in Microbial Fuel Cell.
    Elakkiya E; Matheswaran M
    Bioresour Technol; 2013 May; 136():407-12. PubMed ID: 23567709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Saline catholytes as alternatives to phosphate buffers in microbial fuel cells.
    Ahn Y; Logan BE
    Bioresour Technol; 2013 Mar; 132():436-9. PubMed ID: 23433978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of electron acceptors in catholyte of a two-chambered microbial fuel cell using anion exchange membrane.
    Pandit S; Sengupta A; Kale S; Das D
    Bioresour Technol; 2011 Feb; 102(3):2736-44. PubMed ID: 21129959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of microbial electrodialysis cells equipped with internal proton migration pathways: Enhancement of wastewater treatment, desalination, and hydrogen production.
    Salehmin MNI; Hil Me MF; Daud WRW; Mohd Yasin NH; Abu Bakar MH; Sulong AB; Lim SS
    Sci Total Environ; 2023 Jan; 855():158527. PubMed ID: 36096221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term evaluation of an air-cathode microbial fuel cell with an anion exchange membrane in a 226L wastewater treatment reactor.
    Sugioka M; Yoshida N; Yamane T; Kakihana Y; Higa M; Matsumura T; Sakoda M; Iida K
    Environ Res; 2022 Apr; 205():112416. PubMed ID: 34808126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Power generation in microbial fuel cell fed with post methanation distillery effluent as a function of pH microenvironment.
    Kaushik A; Chetal A
    Bioresour Technol; 2013 Nov; 147():77-83. PubMed ID: 23994694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The electrochemical investigation of salts partition with ion exchange membranes.
    Ata N; Yazicigil Z; Oztekin Y
    J Hazard Mater; 2008 Dec; 160(1):154-60. PubMed ID: 18417288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Fe-chelating complexes on a novel M2FC performance with ferric chloride and ferricyanide catholytes.
    Chung K; Lee I; Han JI
    Chemosphere; 2012 Jan; 86(4):415-9. PubMed ID: 22018860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Employment of osmotic pump as a novel feeding system to operate the laminar-flow microfluidic microbial fuel cell.
    Cao TN; Chang CC; Mukhtar H; Sun Q; Li Y; Yu CP
    Environ Res; 2022 Dec; 215(Pt 3):114347. PubMed ID: 36116490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Treatment of groundwater polluted by arsenic compounds by zero valent iron.
    Sun H; Wang L; Zhang R; Sui J; Xu G
    J Hazard Mater; 2006 Feb; 129(1-3):297-303. PubMed ID: 16194593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating effect of proton-exchange membrane on new air-cathode single-chamber microbial fuel cell configuration for bioenergy recovery from Azorubine dye degradation.
    Kardi SN; Ibrahim N; Rashid NAA; Darzi GN
    Environ Sci Pollut Res Int; 2019 Jul; 26(21):21201-21215. PubMed ID: 31115820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon filtration cathode in microbial fuel cell to enhance wastewater treatment.
    Zuo K; Liang S; Liang P; Zhou X; Sun D; Zhang X; Huang X
    Bioresour Technol; 2015 Jun; 185():426-30. PubMed ID: 25782632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous carbon removal, denitrification and power generation in a membrane-less microbial fuel cell.
    Zhu G; Onodera T; Tandukar M; Pavlostathis SG
    Bioresour Technol; 2013 Oct; 146():1-6. PubMed ID: 23911679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.