BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 28064249)

  • 1. Light Intensity is Important for Hydrogen Production in NaHSO3-Treated Chlamydomonas reinhardtii.
    Wei L; Yi J; Wang L; Huang T; Gao F; Wang Q; Ma W
    Plant Cell Physiol; 2017 Mar; 58(3):451-457. PubMed ID: 28064249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Treatment with NaHSO3 greatly enhances photobiological H2 production in the green alga Chlamydomonas reinhardtii.
    Ma W; Chen M; Wang L; Wei L; Wang Q
    Bioresour Technol; 2011 Sep; 102(18):8635-8. PubMed ID: 21489780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Stepwise NaHSO
    Wei L; Li X; Fan B; Ran Z; Ma W
    Front Plant Sci; 2018; 9():1532. PubMed ID: 30429859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical and morphological characterization of sulfur-deprived and H2-producing Chlamydomonas reinhardtii (green alga).
    Zhang L; Happe T; Melis A
    Planta; 2002 Feb; 214(4):552-61. PubMed ID: 11925039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sustained hydrogen photoproduction by Chlamydomonas reinhardtii: Effects of culture parameters.
    Kosourov S; Tsygankov A; Seibert M; Ghirardi ML
    Biotechnol Bioeng; 2002 Jun; 78(7):731-40. PubMed ID: 12001165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ascorbate accumulation during sulphur deprivation and its effects on photosystem II activity and H2 production of the green alga Chlamydomonas reinhardtii.
    Nagy V; Vidal-Meireles A; Tengölics R; Rákhely G; Garab G; Kovács L; Tóth SZ
    Plant Cell Environ; 2016 Jul; 39(7):1460-72. PubMed ID: 26714836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High light-induced hydrogen peroxide production in Chlamydomonas reinhardtii is increased by high CO2 availability.
    Roach T; Na CS; Krieger-Liszkay A
    Plant J; 2015 Mar; 81(5):759-66. PubMed ID: 25619314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen production by Chlamydomonas reinhardtii: an elaborate interplay of electron sources and sinks.
    Hemschemeier A; Fouchard S; Cournac L; Peltier G; Happe T
    Planta; 2008 Jan; 227(2):397-407. PubMed ID: 17885762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water oxidation by photosystem II is the primary source of electrons for sustained H
    Kosourov S; Nagy V; Shevela D; Jokel M; Messinger J; Allahverdiyeva Y
    Proc Natl Acad Sci U S A; 2020 Nov; 117(47):29629-29636. PubMed ID: 33168746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in the biotechnology of hydrogen production with the microalga Chlamydomonas reinhardtii.
    Torzillo G; Scoma A; Faraloni C; Giannelli L
    Crit Rev Biotechnol; 2015; 35(4):485-96. PubMed ID: 24754449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of extracellular pH on the metabolic pathways in sulfur-deprived, H2-producing Chlamydomonas reinhardtii cultures.
    Kosourov S; Seibert M; Ghirardi ML
    Plant Cell Physiol; 2003 Feb; 44(2):146-55. PubMed ID: 12610217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel screening protocol for the isolation of hydrogen producing Chlamydomonas reinhardtii strains.
    Rühle T; Hemschemeier A; Melis A; Happe T
    BMC Plant Biol; 2008 Oct; 8():107. PubMed ID: 18928519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-cultivation of Chlamydomonas reinhardtii with Azotobacter chroococcum improved H
    Xu L; Cheng X; Wu S; Wang Q
    Biotechnol Lett; 2017 May; 39(5):731-738. PubMed ID: 28432498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photosynthetic H2 metabolism in Chlamydomonas reinhardtii (unicellular green algae).
    Melis A
    Planta; 2007 Oct; 226(5):1075-86. PubMed ID: 17721788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen production by photoautotrophic sulfur-deprived Chlamydomonas reinhardtii pre-grown and incubated under high light.
    Tolstygina IV; Antal TK; Kosourov SN; Krendeleva TE; Rubin AB; Tsygankov AA
    Biotechnol Bioeng; 2009 Mar; 102(4):1055-61. PubMed ID: 18985615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of hydrogen photoproduction by the proton gradient generated by cyclic electron flow in Chlamydomonas reinhardtii.
    Tolleter D; Ghysels B; Alric J; Petroutsos D; Tolstygina I; Krawietz D; Happe T; Auroy P; Adriano JM; Beyly A; Cuiné S; Plet J; Reiter IM; Genty B; Cournac L; Hippler M; Peltier G
    Plant Cell; 2011 Jul; 23(7):2619-30. PubMed ID: 21764992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microoxic Niches within the Thylakoid Stroma of Air-Grown Chlamydomonas reinhardtii Protect [FeFe]-Hydrogenase and Support Hydrogen Production under Fully Aerobic Environment.
    Liran O; Semyatich R; Milrad Y; Eilenberg H; Weiner I; Yacoby I
    Plant Physiol; 2016 Sep; 172(1):264-71. PubMed ID: 27443604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthetic biology for improved hydrogen production in Chlamydomonas reinhardtii.
    King SJ; Jerkovic A; Brown LJ; Petroll K; Willows RD
    Microb Biotechnol; 2022 Jul; 15(7):1946-1965. PubMed ID: 35338590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compartmentalisation of [FeFe]-hydrogenase maturation in Chlamydomonas reinhardtii.
    Sawyer A; Bai Y; Lu Y; Hemschemeier A; Happe T
    Plant J; 2017 Jun; 90(6):1134-1143. PubMed ID: 28295776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acclimation of green algae to sulfur deficiency: underlying mechanisms and application for hydrogen production.
    Antal TK; Krendeleva TE; Rubin AB
    Appl Microbiol Biotechnol; 2011 Jan; 89(1):3-15. PubMed ID: 20878321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.